Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Relativity and Quantum Physics For Beginners

Relativity and Quantum Physics For Beginners Author Steven L. Manly
ISBN-10 9781939994202
Release 2009-11-17
Pages 144
Download Link Click Here

As we humans have expanded our horizons to see things vastly smaller, faster, larger, and farther than ever before, we have been forced to confront preconceptions born of the human experience and create wholly new ways of looking at the world around us. The theories of relativity and quantum physics were developed out of this need and have provided us with phenomenal, mind-twisting insights into the strange and exciting reality show of our universe. Relativity and Quantum Physics For Beginners is an entertaining and accessible introduction to the bizarre concepts that fueled the scientific revolution of the 20th century and led to amazing advances in our understanding of the universe.

Relativistic Quantum Physics

Relativistic Quantum Physics Author Tommy Ohlsson
ISBN-10 9781139504324
Release 2011-09-22
Download Link Click Here

Quantum physics and special relativity theory were two of the greatest breakthroughs in physics during the twentieth century and contributed to paradigm shifts in physics. This book combines these two discoveries to provide a complete description of the fundamentals of relativistic quantum physics, guiding the reader effortlessly from relativistic quantum mechanics to basic quantum field theory. The book gives a thorough and detailed treatment of the subject, beginning with the classification of particles, the Klein–Gordon equation and the Dirac equation. It then moves on to the canonical quantization procedure of the Klein–Gordon, Dirac and electromagnetic fields. Classical Yang–Mills theory, the LSZ formalism, perturbation theory, elementary processes in QED are introduced, and regularization, renormalization and radiative corrections are explored. With exercises scattered through the text and problems at the end of most chapters, the book is ideal for advanced undergraduate and graduate students in theoretical physics.

Introductory Quantum Physics and Relativity

Introductory Quantum Physics and Relativity Author Jacob Dunningham
ISBN-10 9789813228665
Release 2018-04-09
Pages 308
Download Link Click Here

This book is a revised and updated version of Introductory Quantum Physics and Relativity. Based on lectures given as part of the undergraduate degree programme at the University of Leeds, it has been extended in line with recent developments in the field. The book contains all the material required for quantum physics and relativity in the first three years of a traditional physics degree, in addition to more interesting and up-to-date extensions and applications which include quantum field theory, entanglement, and quantum information science. The second edition is unique as an undergraduate textbook as it combines quantum physics and relativity at an introductory level. It expounds the foundations of these two subjects in detail, but also illustrates how they can be combined. It discusses recent applications, but also exposes undergraduates to cutting-edge research topics, such as laser cooling, Bose-Einstein condensation, tunneling microscopes, lasers, nonlocality, and quantum teleportation. Contents: Introduction Old Quantum Theory Quantum Mechanics Applications of Quantum Mechanics Schrödinger Equation in Three Dimensions Spin and Statistics Atoms, Molecules and Lasers Formal Structure of Quantum Mechanics Second Revolution: Relativity Fine Structure of the Hydrogen Atom Relativistic Quantum Mechanics Quantum Entanglement Solutions Readership: Students taking undergraduate-level courses in quantum physics and relativity. Keywords: Quantum Physics;RelativityReview: Key Features: Combines Quantum Physics and Relativity. Covers the two subjects in a more coherent way than existing books. Many universities teach quantum physics and relativity together as one lecture course and so a book that covers both but also shows how they can be combined is a valuable resource Modern Choice of Topics. We will draw on topics from our own research to bring the two subjects up to date and give students a taste of cutting edge research. Examples will include such things as laser cooling, Bose condensation, tunneling microscopes, lasers, Bell's inequalities, quantum teleportation Has questions and answers -- ideal for self-study. This is pitched at typical exam level and so will be excellent for exam practice

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Author Paul Strange
ISBN-10 0521565839
Release 1998-09-17
Pages 594
Download Link Click Here

This graduate text introduces relativistic quantum theory, emphasising its important applications in condensed matter physics. Basic theory, including special relativity, angular momentum and particles of spin zero are first reprised. The text then goes on to discuss the Dirac equation, symmetries and operators, and free particles. Physical consequences of solutions including hole theory and Klein's paradox are considered. Several model problems are solved. Important applications of quantum theory to condensed matter physics then follow. Relevant theory for the one electron atom is explored. The theory is then developed to describe the quantum mechanics of many electron systems, including Hartree-Fock and density functional methods. Scattering theory, band structures, magneto-optical effects and superconductivity are among other significant topics discussed. Many exercises and an extensive reference list are included. This clear account of relativistic quantum theory will be valuable to graduate students and researchers working in condensed matter physics and quantum physics.

Quantum Mechanics from General Relativity

Quantum Mechanics from General Relativity Author M. Sachs
ISBN-10 9027722471
Release 1986-09-30
Pages 227
Download Link Click Here

This monograph is a sequel to my earlier work, General Relativity and Matter [1], which will be referred to henceforth as GRM. The monograph, GRM, focuses on the full set of implications of General Relativity Theory, as a fundamental theory of matter in all domains, from elementary particle physics to cosmology. It is shown there to exhibit an explicit unification of the gravitational and electromagnetic fields of force with the inertial manifestations of matter, expressing the latter explicitly in terms of a covariant field theory within the structure of this general theory. This monograph will focus, primarily, on the special relativistic limit of the part of this general field theory of matter that deals with inertia, in the domain where quantum mechanics has been evoked in contemporary physics as a funda mental explanation for the behavior of elementary matter. Many of the results presented in this book are based on earlier published works in the journals, which will be listed in the Bibliography. These results will be presented here in an expanded form, with more discussion on the motivation and explanation for the theoretical development of the subject than space would allow in normal journal articles, and they will be presented in one place where there would then be a more unified and coherent explication of the subject.

Relativistic Quantum Mechanics

Relativistic Quantum Mechanics Author Nicola Cabibbo
ISBN-10 9781498722315
Release 2015-11-18
Pages 310
Download Link Click Here

Written by two of the most prominent leaders in particle physics, Relativistic Quantum Mechanics: An Introduction to Relativistic Quantum Fields provides a classroom-tested introduction to the formal and conceptual foundations of quantum field theory. Designed for advanced undergraduate- and graduate-level physics students, the text only requires previous courses in classical mechanics, relativity, and quantum mechanics. The introductory chapters of the book summarize the theory of special relativity and its application to the classical description of the motion of a free particle and a field. The authors then explain the quantum formulation of field theory through the simple example of a scalar field described by the Klein–Gordon equation as well as its extension to the case of spin 1⁄2 particles described by the Dirac equation. They also present the elements necessary for constructing the foundational theories of the standard model of electroweak interactions, namely quantum electrodynamics and the Fermi theory of neutron beta decay. Many applications to quantum electrodynamics and weak interaction processes are thoroughly analyzed. The book also explores the timely topic of neutrino oscillations. Logically progressing from the fundamentals to recent discoveries, this textbook provides students with the essential foundation to study more advanced theoretical physics and elementary particle physics. It will help them understand the theory of electroweak interactions and gauge theories. View the second book in this collection: Electroweak Interactions.

LSC Relativistic Quantum Mechanics

LSC Relativistic Quantum Mechanics Author James Bjorken
ISBN-10 0072320028
Release 1998-09-24
Pages 314
Download Link Click Here

In this text the authors develop a propagator theory of Dirac particles, photons, and Klein-Gordon mesons and per- form a series of calculations designed to illustrate various useful techniques and concepts in electromagnetic, weak, and strong interactions. these include defining and implementing the renormalization program and evaluating effects of radia- tive corrections, such as the Lamb shift, in low-order calculations. The necessary background for the book is pro- vided by a course in nonrelativistic quantum mechanics at the general level of Schiff's text, QUANTUM MECHANICS.

Relativity and Quantum Mechanics

Relativity and Quantum Mechanics Author Paul Fleisher
ISBN-10 9781580134828
Release 2009-01-01
Pages 62
Download Link Click Here

13 yrs+

Quantum Physics For Dummies

Quantum Physics For Dummies Author Steven Holzner
ISBN-10 9781118460863
Release 2012-08-20
Pages 336
Download Link Click Here

Quantum Physics For Dummies, Revised Edition helps make quantum physics understandable and accessible. From what quantum physics can do for the world to understanding hydrogen atoms, readers will get complete coverage of the subject, along with numerous examples to help them tackle the tough equations. Compatible with classroom text books and courses, Quantum Physics For Dummies, Revised Edition lets students study at their own paces and helps them prepare for graduate or professional exams. Coverage includes: The Schrodinger Equation and its Applications The Foundations of Quantum Physics Vector Notation Spin Scattering Theory, Angular Momentum, and more Your plain-English guide to understanding and working with the micro world Quantum physics — also called quantum mechanics or quantum field theory — can be daunting for even the most dedicated student or enthusiast of science, math, or physics. This friendly, concise guide makes this challenging subject understandable and accessible, from atoms to particles to gases and beyond. Plus, it's packed with fully explained examples to help you tackle the tricky equations like a pro! Compatible with any classroom course — study at your own pace and prepare for graduate or professional exams Your journey begins here — understand what quantum physics is and what kinds of problems it can solve Know the basic math — from state vectors to quantum matrix manipulations, get the foundation you need to proceed Put quantum physics to work — make sense of Schrödinger's equation and handle particles bound in square wells and harmonic oscillators Solve problems in three dimensions — use the full operators to handle wave functions and eigenvectors to find the natural wave functions of a system Discover the latest research — learn the cutting-edge quantum physics theories that aim to explain the universe itself

Quantum Physics For Beginners

Quantum Physics For Beginners Author Jason Stephenson
ISBN-10 9781681274393
Release 2015-01-26
Pages 36
Download Link Click Here

We may have lived knowing that the world around us operates in a way as if we observe them to be. This knowledge of how the universe operates, based primarily of our observations, has enabled us to predict actions and motions and allowed us to build machines and equipments that have made our lives easier and more enjoyable. The field that allowed us to do that is classical physics. The world, however, is advancing and our knowledge of how things are expands over time. We have discovered in the last few decades that these sets of rules that we have devised can perfectly describe the large-scale world but cannot accurately define the behaviors of particles in the microscopic world. This necessitated another field to explain the different behavior in the microscopic world: quantum physics.

Non Relativistic Quantum Mechanics

Non Relativistic Quantum Mechanics Author Ravinder R. Puri
ISBN-10 9781316870495
Release 2017-07-04
Download Link Click Here

This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail.

Relativistic Quantum Mechanics and Quantum Fields

Relativistic Quantum Mechanics and Quantum Fields Author T-Y Wu
ISBN-10 9789813103535
Release 1991-03-06
Pages 420
Download Link Click Here

A sequel to the well received book, Quantum Mechanics by T Y Wu, this book carries on where the earlier volume ends. This present volume follows the generally pedagogic style of Quantum Mechanics. The scope ranges from relativistic quantum mechanics to an introduction to quantum field theory with quantum electrodynamics as the basic example and ends with an exposition of important issues related to the standard model. The book presents the subject in basic and easy-to-grasp notions which will enhance the purpose of this book as a useful textbook in the area of relativistic quantum mechanics and quantum electrodynamics. Request Inspection Copy

Relativistic Quantum Mechanics and Field Theory

Relativistic Quantum Mechanics and Field Theory Author Franz Gross
ISBN-10 9783527617340
Release 2008-07-11
Pages 643
Download Link Click Here

An accessible, comprehensive reference to modern quantum mechanics and field theory. In surveying available books on advanced quantum mechanics and field theory, Franz Gross determined that while established books were outdated, newer titles tended to focus on recent developments and disregard the basics. Relativistic Quantum Mechanics and Field Theory fills this striking gap in the field. With a strong emphasis on applications to practical problems as well as calculations, Dr. Gross provides complete, up-to-date coverage of both elementary and advanced topics essential for a well-rounded understanding of the field. Developing the material at a level accessible even to newcomers to quantum mechanics, the book begins with topics that every physicist should know-quantization of the electromagnetic field, relativistic one body wave equations, and the theoretical explanation of atomic decay. Subsequent chapters prepare readers for advanced work, covering such major topics as gauge theories, path integral techniques, spontaneous symmetry breaking, and an introduction to QCD, chiral symmetry, and the Standard Model. A special chapter is devoted to relativistic bound state wave equations-an important topic that is often overlooked in other books. Clear and concise throughout, Relativistic Quantum Mechanics and Field Theory boasts examples from atomic and nuclear physics as well as particle physics, and includes appendices with background material. It is an essential reference for anyone working in quantum mechanics today.

Quantum Non Locality and Relativity

Quantum Non Locality and Relativity Author Tim Maudlin
ISBN-10 9781444331264
Release 2011-05-06
Pages 298
Download Link Click Here

"Quantum Non-Locality and Relativity is recognized as the premier philosophical study of Bell's Theorem and its implication for the relativistic account of space and time. Previous editions have been praised for the remarkable clarity of Maudlin's descriptions of both Bell's theorem and his examination of the potential conflict between the theorem and relativity. The third edition of this text has been carefully updated to reflect significant developments, including a new chapter covering important recent work in the foundations of physics. Foremost among these is Roderich Tumiulka's explicit, relativistic theory that can reproduce the quantum mechanical violation of Bell's inequality. The "Free Will Theorem" of John Conway and Simon Kochen is also discussed, as is the status of locality in the Many Worlds interpretation of quantum theory. The book has also been updated to reflect recent results in information theory. The book introduces philosophers to the relevant physics and demonstrates how philosophical analysis can help to resolve some of the problems, and requires no technical background in Physics. All of the physics is presented from first principles, and as much as possible is presented pictorially"--Provided by publisher.

Relativity and Quantum Mechanics

Relativity and Quantum Mechanics Author Paul Fleisher
ISBN-10 9781580134828
Release 2009-01-01
Pages 62
Download Link Click Here

13 yrs+

From Special Relativity to Feynman Diagrams

From Special Relativity to Feynman Diagrams Author Riccardo D'Auria
ISBN-10 9783319220147
Release 2015-10-06
Pages 601
Download Link Click Here

This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincaré groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added.

Relativity Symmetry and the Structure of Quantum Theory Volume 2

Relativity  Symmetry  and the Structure of Quantum Theory  Volume 2 Author William H Klink
ISBN-10 9781681748900
Release 2018-03-23
Pages 107
Download Link Click Here

The first version of quantum theory, developed in the mid 1920's, is what is called nonrelativistic quantum theory; it is based on a form of relativity which, in a previous volume, was called Newton relativity. But quickly after this first development, it was realized that, in order to account for high energy phenomena such as particle creation, it was necessary to develop a quantum theory based on Einstein relativity. This in turn led to the development of relativistic quantum field theory, which is an intrinsically many-body theory. But this is not the only possibility for a relativistic quantum theory. In this book we take the point of view of a particle theory, based on the irreducible representations of the Poincare group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; we develop what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A central issue in any relativistic quantum theory is how to introduce interactions without spoiling relativistic invariance. We show that interactions can be incorporated in a mass operator, in such a way that relativistic invariance is maintained. Surprisingly for a relativistic theory, such a construction allows for instantaneous interactions; in addition, dynamical particle exchange and particle production can be included in a multichannel formulation of the mass operator. For systems of more than two particles, however, straightforward application of such a construction leads to the undesirable property that clusters of widely separated particles continue to interact with one another, even if the interactions between the individual particles are of short range. A significant part of this volume deals with the solution of this problem. Since relativistic quantum mechanics is not as well-known as relativistic quantum field theory, a chapter is devoted to applications of point form quantum mechanics to nuclear physics; in particular we show how constituent quark models can be used to derive electromagnetic and other properties of hadrons.