Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Robust Cluster Analysis and Variable Selection

Robust Cluster Analysis and Variable Selection Author Gunter Ritter
ISBN-10 9781439857960
Release 2014-09-02
Pages 392
Download Link Click Here

Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of both applications, describing scenarios in which accuracy and speed are the primary goals. Robust Cluster Analysis and Variable Selection includes all of the important theoretical details, and covers the key probabilistic models, robustness issues, optimization algorithms, validation techniques, and variable selection methods. The book illustrates the different methods with simulated data and applies them to real-world data sets that can be easily downloaded from the web. This provides you with guidance in how to use clustering methods as well as applicable procedures and algorithms without having to understand their probabilistic fundamentals.



Soft Methods for Data Science

Soft Methods for Data Science Author Maria Brigida Ferraro
ISBN-10 9783319429724
Release 2016-08-30
Pages 535
Download Link Click Here

This proceedings volume is a collection of peer reviewed papers presented at the 8th International Conference on Soft Methods in Probability and Statistics (SMPS 2016) held in Rome (Italy). The book is dedicated to Data science which aims at developing automated methods to analyze massive amounts of data and to extract knowledge from them. It shows how Data science employs various programming techniques and methods of data wrangling, data visualization, machine learning, probability and statistics. The soft methods proposed in this volume represent a collection of tools in these fields that can also be useful for data science.



Mixture Model Based Classification

Mixture Model Based Classification Author Paul D. McNicholas
ISBN-10 9781482225679
Release 2016-08-18
Pages 236
Download Link Click Here

Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster.



Cladag 2017 Book of Short Papers

Cladag 2017 Book of Short Papers Author Francesca Greselin
ISBN-10 9788899459710
Release 2017-09-29
Pages 698
Download Link Click Here

This book is the collection of the Abstract / Short Papers submitted by the authors of the International Conference of The CLAssification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS), held in Milan (Italy) on September 13-15, 2017.



Statistical Learning with Sparsity

Statistical Learning with Sparsity Author Trevor Hastie
ISBN-10 9781498712170
Release 2015-05-07
Pages 367
Download Link Click Here

Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of l1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.



Robust Methods for Data Reduction

Robust Methods for Data Reduction Author Alessio Farcomeni
ISBN-10 9781466590632
Release 2016-01-13
Pages 297
Download Link Click Here

Robust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical correlation analysis, factor analysis, clustering, double clustering, and discriminant analysis. The first part of the book illustrates how dimension reduction techniques synthesize available information by reducing the dimensionality of the data. The second part focuses on cluster and discriminant analysis. The authors explain how to perform sample reduction by finding groups in the data. Despite considerable theoretical achievements, robust methods are not often used in practice. This book fills the gap between theoretical robust techniques and the analysis of real data sets in the area of data reduction. Using real examples, the authors show how to implement the procedures in R. The code and data for the examples are available on the book’s CRC Press web page.



Robust Statistical Methods with R

Robust Statistical Methods with R Author Jana Jurečková
ISBN-10 1420035134
Release 2005-11-29
Pages 216
Download Link Click Here

Robust statistical methods were developed to supplement the classical procedures when the data violate classical assumptions. They are ideally suited to applied research across a broad spectrum of study, yet most books on the subject are narrowly focused, overly theoretical, or simply outdated. Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on practical application. The authors work from underlying mathematical tools to implementation, paying special attention to the computational aspects. They cover the whole range of robust methods, including differentiable statistical functions, distance of measures, influence functions, and asymptotic distributions, in a rigorous yet approachable manner. Highlighting hands-on problem solving, many examples and computational algorithms using the R software supplement the discussion. The book examines the characteristics of robustness, estimators of real parameter, large sample properties, and goodness-of-fit tests. It also includes a brief overview of R in an appendix for those with little experience using the software. Based on more than a decade of teaching and research experience, Robust Statistical Methods with R offers a thorough, detailed overview of robust procedures. It is an ideal introduction for those new to the field and a convenient reference for those who apply robust methods in their daily work.



Big Data and Social Science

Big Data and Social Science Author Ian Foster
ISBN-10 9781498751438
Release 2016-08-10
Pages 376
Download Link Click Here

Both Traditional Students and Working Professionals Acquire the Skills to Analyze Social Problems. Big Data and Social Science: A Practical Guide to Methods and Tools shows how to apply data science to real-world problems in both research and the practice. The book provides practical guidance on combining methods and tools from computer science, statistics, and social science. This concrete approach is illustrated throughout using an important national problem, the quantitative study of innovation. The text draws on the expertise of prominent leaders in statistics, the social sciences, data science, and computer science to teach students how to use modern social science research principles as well as the best analytical and computational tools. It uses a real-world challenge to introduce how these tools are used to identify and capture appropriate data, apply data science models and tools to that data, and recognize and respond to data errors and limitations. For more information, including sample chapters and news, please visit the author's website.



Classification and Data Mining

Classification and Data Mining Author Antonio Giusti
ISBN-10 9783642288944
Release 2012-12-18
Pages 286
Download Link Click Here

​​​​​​​​​This volume contains both methodological papers showing new original methods, and papers on applications illustrating how new domain-specific knowledge can be made available from data by clever use of data analysis methods. The volume is subdivided in three parts: Classification and Data Analysis; Data Mining; and Applications. The selection of peer reviewed papers had been presented at a meeting of classification societies held in Florence, Italy, in the area of "Classification and Data Mining".​



Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R Author John Kloke
ISBN-10 9781498787277
Release 2016-04-19
Pages 287
Download Link Click Here

A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.



Introduction to High Dimensional Statistics

Introduction to High Dimensional Statistics Author Christophe Giraud
ISBN-10 9781482237955
Release 2014-12-17
Pages 270
Download Link Click Here

Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise. Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for handling high-dimensional data. The book is intended to expose the reader to the key concepts and ideas in the most simple settings possible while avoiding unnecessary technicalities. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this highly accessible text: Describes the challenges related to the analysis of high-dimensional data Covers cutting-edge statistical methods including model selection, sparsity and the lasso, aggregation, and learning theory Provides detailed exercises at the end of every chapter with collaborative solutions on a wikisite Illustrates concepts with simple but clear practical examples Introduction to High-Dimensional Statistics is suitable for graduate students and researchers interested in discovering modern statistics for massive data. It can be used as a graduate text or for self-study.



Applied Survey Data Analysis

Applied Survey Data Analysis Author Steven G. Heeringa
ISBN-10 1420080679
Release 2010-04-05
Pages 487
Download Link Click Here

Taking a practical approach that draws on the authors’ extensive teaching, consulting, and research experiences, Applied Survey Data Analysis provides an intermediate-level statistical overview of the analysis of complex sample survey data. It emphasizes methods and worked examples using available software procedures while reinforcing the principles and theory that underlie those methods. After introducing a step-by-step process for approaching a survey analysis problem, the book presents the fundamental features of complex sample designs and shows how to integrate design characteristics into the statistical methods and software for survey estimation and inference. The authors then focus on the methods and models used in analyzing continuous, categorical, and count-dependent variables; event history; and missing data problems. Some of the techniques discussed include univariate descriptive and simple bivariate analyses, the linear regression model, generalized linear regression modeling methods, the Cox proportional hazards model, discrete time models, and the multiple imputation analysis method. The final chapter covers new developments in survey applications of advanced statistical techniques, including model-based analysis approaches. Designed for readers working in a wide array of disciplines who use survey data in their work, this book also provides a useful framework for integrating more in-depth studies of the theory and methods of survey data analysis. A guide to the applied statistical analysis and interpretation of survey data, it contains many examples and practical exercises based on major real-world survey data sets. Although the authors use Stata for most examples in the text, they offer SAS, SPSS, SUDAAN, R, WesVar, IVEware, and Mplus software code for replicating the examples on the book’s website: http://www.isr.umich.edu/src/smp/asda/



Dependence Modeling with Copulas

Dependence Modeling with Copulas Author Harry Joe
ISBN-10 9781466583238
Release 2014-06-26
Pages 480
Download Link Click Here

Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to assist in copula model selection. The author shows how numerical methods and algorithms for inference and simulation are important in high-dimensional copula applications. He presents the algorithms as pseudocode, illustrating their implementation for high-dimensional copula models. He also incorporates results to determine dependence and tail properties of multivariate distributions for future constructions of copula models.



Handbook of Cluster Analysis

Handbook of Cluster Analysis Author Christian Hennig
ISBN-10 9781466551893
Release 2015-12-16
Pages 753
Download Link Click Here

Handbook of Cluster Analysis provides a comprehensive and unified account of the main research developments in cluster analysis. Written by active, distinguished researchers in this area, the book helps readers make informed choices of the most suitable clustering approach for their problem and make better use of existing cluster analysis tools. The book is organized according to the traditional core approaches to cluster analysis, from the origins to recent developments. After an overview of approaches and a quick journey through the history of cluster analysis, the book focuses on the four major approaches to cluster analysis. These approaches include methods for optimizing an objective function that describes how well data is grouped around centroids, dissimilarity-based methods, mixture models and partitioning models, and clustering methods inspired by nonparametric density estimation. The book also describes additional approaches to cluster analysis, including constrained and semi-supervised clustering, and explores other relevant issues, such as evaluating the quality of a cluster. This handbook is accessible to readers from various disciplines, reflecting the interdisciplinary nature of cluster analysis. For those already experienced with cluster analysis, the book offers a broad and structured overview. For newcomers to the field, it presents an introduction to key issues. For researchers who are temporarily or marginally involved with cluster analysis problems, the book gives enough algorithmic and practical details to facilitate working knowledge of specific clustering areas.



Asymptotic Analysis of Mixed Effects Models

Asymptotic Analysis of Mixed Effects Models Author Jiming Jiang
ISBN-10 9781351645591
Release 2017-09-19
Pages 252
Download Link Click Here

Large sample techniques are fundamental to all fields of statistics. Mixed effects models, including linear mixed models, generalized linear mixed models, non-linear mixed effects models, and non-parametric mixed effects models are complex models, yet, these models are extensively used in practice. This monograph provides a comprehensive account of asymptotic analysis of mixed effects models. The monograph is suitable for researchers and graduate students who wish to learn about asymptotic tools and research problems in mixed effects models. It may also be used as a reference book for a graduate-level course on mixed effects models, or asymptotic analysis.



Quasi Least Squares Regression

Quasi Least Squares Regression Author Justine Shults
ISBN-10 9781420099935
Release 2014-01-28
Pages 221
Download Link Click Here

Drawing on the authors’ substantial expertise in modeling longitudinal and clustered data, Quasi-Least Squares Regression provides a thorough treatment of quasi-least squares (QLS) regression—a computational approach for the estimation of correlation parameters within the framework of generalized estimating equations (GEEs). The authors present a detailed evaluation of QLS methodology, demonstrating the advantages of QLS in comparison with alternative methods. They describe how QLS can be used to extend the application of the traditional GEE approach to the analysis of unequally spaced longitudinal data, familial data, and data with multiple sources of correlation. In some settings, QLS also allows for improved analysis with an unstructured correlation matrix. Special focus is given to goodness-of-fit analysis as well as new strategies for selecting the appropriate working correlation structure for QLS and GEE. A chapter on longitudinal binary data tackles recent issues raised in the statistical literature regarding the appropriateness of semi-parametric methods, such as GEE and QLS, for the analysis of binary data; this chapter includes a comparison with the first-order Markov maximum-likelihood (MARK1ML) approach for binary data. Examples throughout the book demonstrate each topic of discussion. In particular, a fully worked out example leads readers from model building and interpretation to the planning stages for a future study (including sample size calculations). The code provided enables readers to replicate many of the examples in Stata, often with corresponding R, SAS, or MATLAB® code offered in the text or on the book’s website.



Mixed Effects Models for Complex Data

Mixed Effects Models for Complex Data Author Lang Wu
ISBN-10 1420074083
Release 2009-11-11
Pages 431
Download Link Click Here

Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.