Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

S Variable Approach to LMI Based Robust Control

S Variable Approach to LMI Based Robust Control Author Yoshio Ebihara
ISBN-10 9781447166061
Release 2014-10-16
Pages 246
Download Link Click Here

This book shows how the use of S-variables (SVs) in enhancing the range of problems that can be addressed with the already-versatile linear matrix inequality (LMI) approach to control can, in many cases, be put on a more unified, methodical footing. Beginning with the fundamentals of the SV approach, the text shows how the basic idea can be used for each problem (and when it should not be employed at all). The specific adaptations of the method necessitated by each problem are also detailed. The problems dealt with in the book have the common traits that: analytic closed-form solutions are not available; and LMIs can be applied to produce numerical solutions with a certain amount of conservatism. Typical examples are robustness analysis of linear systems affected by parametric uncertainties and the synthesis of a linear controller satisfying multiple, often conflicting, design specifications. For problems in which LMI methods produce conservative results, the SV approach is shown to achieve greater accuracy. The authors emphasize the simplicity and easy comprehensibility of the SV approach and show how it can be implemented in programs without difficulty so that its power becomes readily apparent. The S-variable Approach to LMI-based Robust Control is a useful reference for academic control researchers, applied mathematicians and graduate students interested in LMI methods and convex optimization and will also be of considerable assistance to practising control engineers faced with problems of conservatism in their systems and controllers.



A Course in Robust Control Theory

A Course in Robust Control Theory Author Geir E. Dullerud
ISBN-10 9781475732900
Release 2013-03-14
Pages 419
Download Link Click Here

During the 90s robust control theory has seen major advances and achieved a new maturity, centered around the notion of convexity. The goal of this book is to give a graduate-level course on this theory that emphasizes these new developments, but at the same time conveys the main principles and ubiquitous tools at the heart of the subject. Its pedagogical objectives are to introduce a coherent and unified framework for studying the theory, to provide students with the control-theoretic background required to read and contribute to the research literature, and to present the main ideas and demonstrations of the major results. The book will be of value to mathematical researchers and computer scientists, graduate students planning to do research in the area, and engineering practitioners requiring advanced control techniques.



Advances in Sliding Mode Control

Advances in Sliding Mode Control Author B Bandyopadhyay
ISBN-10 9783642369865
Release 2013-03-15
Pages 381
Download Link Click Here

The sliding mode control paradigm has become a mature technique for the design of robust controllers for a wide class of systems including nonlinear, uncertain and time-delayed systems. This book is a collection of plenary and invited talks delivered at the 12th IEEE International Workshop on Variable Structure System held at the Indian Institute of Technology, Mumbai, India in January 2012. After the workshop, these researchers were invited to develop book chapters for this edited collection in order to reflect the latest results and open research questions in the area. The contributed chapters have been organized by the editors to reflect the various themes of sliding mode control which are the current areas of theoretical research and applications focus; namely articulation of the fundamental underpinning theory of the sliding mode design paradigm, sliding modes for decentralized system representations, control of time-delay systems, the higher order sliding mode concept, results applicable to nonlinear and underactuated systems, sliding mode observers, discrete sliding mode control together with cutting edge research contributions in the application of the sliding mode concept to real world problems. This book provides the reader with a clear and complete picture of the current trends in Variable Structure Systems and Sliding Mode Control Theory.



Robust Control and Linear Parameter Varying Approaches

Robust Control and Linear Parameter Varying Approaches Author Olivier Sename
ISBN-10 9783642361104
Release 2013-02-01
Pages 397
Download Link Click Here

Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g. proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design, take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations, manage interactions between various actuators to optimize the dynamic behavior of vehicles. This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on some recent works on LPV approaches (for modelling, analysis, control, observation and diagnosis), the main emphasis is put on road vehicles but some illustrations are concerned with railway, aerospace and underwater vehicles. The main objective of the book is to demonstrate the value of this approach for controlling the dynamic behavior of vehicles. It presents, in a rm way, background and new results on LPV methods and their application to vehicle dynamics.



Linear Matrix Inequalities in System and Control Theory

Linear Matrix Inequalities in System and Control Theory Author Stephen Boyd
ISBN-10 1611970776
Release 1994
Pages 193
Download Link Click Here

In this book the authors reduce a wide variety of problems arising in system and control theory to a handful of convex and quasiconvex optimization problems that involve linear matrix inequalities. These optimization problems can be solved using recently developed numerical algorithms that not only are polynomial-time but also work very well in practice; the reduction therefore can be considered a solution to the original problems. This book opens up an important new research area in which convex optimization is combined with system and control theory, resulting in the solution of a large number of previously unsolved problems.



Recent Advances in Learning and Control

Recent Advances in Learning and Control Author Vincent D. Blondel
ISBN-10 9781848001541
Release 2008-01-11
Pages 282
Download Link Click Here

This volume is composed of invited papers on learning and control. The contents form the proceedings of a workshop held in January 2008, in Hyderabad that honored the 60th birthday of Doctor Mathukumalli Vidyasagar. The 14 papers, written by international specialists in the field, cover a variety of interests within the broader field of learning and control. The diversity of the research provides a comprehensive overview of a field of great interest to control and system theorists.



Fuzzy Control Systems Design and Analysis

Fuzzy Control Systems Design and Analysis Author Kazuo Tanaka
ISBN-10 9780471465225
Release 2004-04-07
Pages 320
Download Link Click Here

A comprehensive treatment of model-based fuzzy control systems This volume offers full coverage of the systematic framework for the stability and design of nonlinear fuzzy control systems. Building on the Takagi-Sugeno fuzzy model, authors Tanaka and Wang address a number of important issues in fuzzy control systems, including stability analysis, systematic design procedures, incorporation of performance specifications, numerical implementations, and practical applications. Issues that have not been fully treated in existing texts, such as stability analysis, systematic design, and performance analysis, are crucial to the validity and applicability of fuzzy control methodology. Fuzzy Control Systems Design and Analysis addresses these issues in the framework of parallel distributed compensation, a controller structure devised in accordance with the fuzzy model. This balanced treatment features an overview of fuzzy control, modeling, and stability analysis, as well as a section on the use of linear matrix inequalities (LMI) as an approach to fuzzy design and control. It also covers advanced topics in model-based fuzzy control systems, including modeling and control of chaotic systems. Later sections offer practical examples in the form of detailed theoretical and experimental studies of fuzzy control in robotic systems and a discussion of future directions in the field. Fuzzy Control Systems Design and Analysis offers an advanced treatment of fuzzy control that makes a useful reference for researchers and a reliable text for advanced graduate students in the field.



Advanced Synchronization Control and Bifurcation of Chaotic Fractional Order Systems

Advanced Synchronization Control and Bifurcation of Chaotic Fractional Order Systems Author Boulkroune, Abdesselem
ISBN-10 9781522554196
Release 2018-05-11
Pages 539
Download Link Click Here

In the recent years, fractional-order systems have been studied by many researchers in the engineering field. It was found that many systems can be described more accurately by fractional differential equations than by integer-order models. Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems is a scholarly publication that explores new developments related to novel chaotic fractional-order systems, control schemes, and their applications. Featuring coverage on a wide range of topics including chaos synchronization, nonlinear control, and cryptography, this publication is geared toward engineers, IT professionals, researchers, and upper-level graduate students seeking current research on chaotic fractional-order systems and their applications in engineering and computer science.



Adaptive Dynamic Programming for Control

Adaptive Dynamic Programming for Control Author Huaguang Zhang
ISBN-10 9781447147572
Release 2012-12-14
Pages 424
Download Link Click Here

There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming in Discrete Time approaches the challenging topic of optimal control for nonlinear systems using the tools of adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-horizon control, implemented in discrete-time nonlinear systems showing the reader how to obtain suboptimal control solutions within a fixed number of control steps and with results more easily applied in real systems than those usually gained from infinite-horizon control; • nonlinear games for which a pair of mixed optimal policies are derived for solving games both when the saddle point does not exist, and, when it does, avoiding the existence conditions of the saddle point. Non-zero-sum games are studied in the context of a single network scheme in which policies are obtained guaranteeing system stability and minimizing the individual performance function yielding a Nash equilibrium. In order to make the coverage suitable for the student as well as for the expert reader, Adaptive Dynamic Programming in Discrete Time: • establishes the fundamental theory involved clearly with each chapter devoted to a clearly identifiable control paradigm; • demonstrates convergence proofs of the ADP algorithms to deepen understanding of the derivation of stability and convergence with the iterative computational methods used; and • shows how ADP methods can be put to use both in simulation and in real applications. This text will be of considerable interest to researchers interested in optimal control and its applications in operations research, applied mathematics computational intelligence and engineering. Graduate students working in control and operations research will also find the ideas presented here to be a source of powerful methods for furthering their study.



Robust Adaptive Control

Robust Adaptive Control Author Petros Ioannou
ISBN-10 9780486320724
Release 2013-09-26
Pages 848
Download Link Click Here

Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.



Multivariable Feedback Control

Multivariable Feedback Control Author Sigurd Skogestad
ISBN-10 047001167X
Release 2005-11-04
Pages 590
Download Link Click Here

Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing



Robust and Optimal Control

Robust and Optimal Control Author Kemin Zhou
ISBN-10 0134565673
Release 1996
Pages 596
Download Link Click Here

For graduate—level courses and for professional reference dealing with robust linear control, multivariable design and H...à Control. Assumes prior knowledge of feedback and control systems and linear systems theory. Also appropriate for practicing engineers familiar with modern control techniques. Class-tested at major institutions around the world and regarded as an “instant classic” by reviewers, this work offers the most complete coverage of robust and H...à control available. The clarity of the overall methodology: how one sets a problem up, introduces uncertainty models, weights, performance norms, etc. set this book apart from others in the field. Offers detailed treatment of topics not found elsewhere including — Riccati equations, ...m theory, H...à loopshaping, controller reduction, how to formulate problems in a LFT form. Key results are given immediately for quick access in the beginning of the book. Overall the book serves as a tremendous self-contained reference by having collected and developed all the important proofs and key results available. Problems sets are available on Internet.



Robust Output Feedback H infinity Control and Filtering for Uncertain Linear Systems

Robust Output Feedback H infinity Control and Filtering for Uncertain Linear Systems Author Xiao-Heng Chang
ISBN-10 9783642551079
Release 2014-05-02
Pages 245
Download Link Click Here

"Robust Output Feedback H-infinity Control and Filtering for Uncertain Linear Systems" discusses new and meaningful findings on robust output feedback H-infinity control and filtering for uncertain linear systems, presenting a number of useful and less conservative design results based on the linear matrix inequality (LMI) technique. Though primarily intended for graduate students in control and filtering, the book can also serve as a valuable reference work for researchers wishing to explore the area of robust H-infinity control and filtering of uncertain systems. Dr. Xiao-Heng Chang is a Professor at the College of Engineering, Bohai University, China.



Attractive Ellipsoids in Robust Control

Attractive Ellipsoids in Robust Control Author Alexander Poznyak
ISBN-10 9783319092102
Release 2014-09-29
Pages 348
Download Link Click Here

This monograph introduces a newly developed robust-control design technique for a wide class of continuous-time dynamical systems called the “attractive ellipsoid method.” Along with a coherent introduction to the proposed control design and related topics, the monograph studies nonlinear affine control systems in the presence of uncertainty and presents a constructive and easily implementable control strategy that guarantees certain stability properties. The authors discuss linear-style feedback control synthesis in the context of the above-mentioned systems. The development and physical implementation of high-performance robust-feedback controllers that work in the absence of complete information is addressed, with numerous examples to illustrate how to apply the attractive ellipsoid method to mechanical and electromechanical systems. While theorems are proved systematically, the emphasis is on understanding and applying the theory to real-world situations. Attractive Ellipsoids in Robust Control will appeal to undergraduate and graduate students with a background in modern systems theory as well as researchers in the fields of control engineering and applied mathematics.



Stability of Time Delay Systems

Stability of Time Delay Systems Author Keqin Gu
ISBN-10 9781461200390
Release 2012-12-06
Pages 356
Download Link Click Here

This book is a self-contained presentation of the background and progress of the study of time-delay systems, a subject with broad applications to a number of areas.



Robust Control of Time delay Systems

Robust Control of Time delay Systems Author Qing-Chang Zhong
ISBN-10 9781846282652
Release 2006-05-28
Pages 231
Download Link Click Here

Recently, there have been significant developments in robust control of time-delay systems. This volume presents a systematic treatment of robust control for such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. The author covers the whole range of H-infinity control of time-delay systems: from controller parameterization implementation; from the Nehari problem to the four-block problem; from theoretical developments to practical issues. The major tools used are similarity transformation, the chain-scattering approach and J-spectral factorization. Self-contained, "Robust Control of Time-delay Systems" will interest control theorists and mathematicians working with time-delay systems. Its methodical approach will be of value to graduates studying general robust control theory or its applications in time-delay systems.



Structured Controllers for Uncertain Systems

Structured Controllers for Uncertain Systems Author Rosario Toscano
ISBN-10 9781447151883
Release 2013-05-29
Pages 298
Download Link Click Here

Structured Controllers for Uncertain Systems focuses on the development of easy-to-use design strategies for robust low-order or fixed-structure controllers (particularly the industrially ubiquitous PID controller). These strategies are based on a recently-developed stochastic optimization method termed the "Heuristic Kalman Algorithm" (HKA) the use of which results in a simplified methodology that enables the solution of the structured control problem without a profusion of user-defined parameters. An overview of the main stochastic methods employable in the context of continuous non-convex optimization problems is also provided and various optimization criteria for the design of a structured controller are considered; H ∞, H2, and mixed H2/H∞ each merits a chapter to itself. Time-domain-performance specifications can be easily incorporated in the design.