Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

A First Course in Abstract Algebra

A First Course in Abstract Algebra Author Marlow Anderson
ISBN-10 9781420057119
Release 2005-01-27
Pages 696
Download Link Click Here

Most abstract algebra texts begin with groups, then proceed to rings and fields. While groups are the logically simplest of the structures, the motivation for studying groups can be somewhat lost on students approaching abstract algebra for the first time. To engage and motivate them, starting with something students know and abstracting from there is more natural-and ultimately more effective. Authors Anderson and Feil developed A First Course in Abstract Algebra: Rings, Groups and Fields based upon that conviction. The text begins with ring theory, building upon students' familiarity with integers and polynomials. Later, when students have become more experienced, it introduces groups. The last section of the book develops Galois Theory with the goal of showing the impossibility of solving the quintic with radicals. Each section of the book ends with a "Section in a Nutshell" synopsis of important definitions and theorems. Each chapter includes "Quick Exercises" that reinforce the topic addressed and are designed to be worked as the text is read. Problem sets at the end of each chapter begin with "Warm-Up Exercises" that test fundamental comprehension, followed by regular exercises, both computational and "supply the proof" problems. A Hints and Answers section is provided at the end of the book. As stated in the title, this book is designed for a first course--either one or two semesters in abstract algebra. It requires only a typical calculus sequence as a prerequisite and does not assume any familiarity with linear algebra or complex numbers.



Sets and Groups

Sets and Groups Author James Alexander Green
ISBN-10 0710212275
Release 1988-01
Pages 258
Download Link Click Here

This is a fully revised and extended work of the author's highly successful first edition.



Abstract Algebra

Abstract Algebra Author Dan Saracino
ISBN-10 9781478610137
Release 2008-09-02
Pages 313
Download Link Click Here

The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.



Visual Group Theory

Visual Group Theory Author Nathan Carter
ISBN-10 088385757X
Release 2009-04-09
Pages 297
Download Link Click Here

Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts. But its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.



Rings Fields and Groups

Rings  Fields and Groups Author R. B. J. T. Allenby
ISBN-10 0340544406
Release 1991
Pages 383
Download Link Click Here

Provides an introduction to the results, methods and ideas which are now commonly studied in abstract algebra courses



A Book of Abstract Algebra

A Book of Abstract Algebra Author Charles C Pinter
ISBN-10 9780486474175
Release 2010-01-14
Pages 384
Download Link Click Here

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.



Proofs and Fundamentals

Proofs and Fundamentals Author Ethan D. Bloch
ISBN-10 1441971270
Release 2011-02-15
Pages 358
Download Link Click Here

“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.



A First Course in Abstract Algebra

A First Course in Abstract Algebra Author John B. Fraleigh
ISBN-10 8177589008
Release 2003
Pages 520
Download Link Click Here

A First Course in Abstract Algebra has been writing in one form or another for most of life. You can find so many inspiration from A First Course in Abstract Algebra also informative, and entertaining. Click DOWNLOAD or Read Online button to get full A First Course in Abstract Algebra book for free.



Numbers Groups and Codes

Numbers  Groups and Codes Author J. F. Humphreys
ISBN-10 1139451162
Release 2004-05-13
Pages
Download Link Click Here

This textbook is an introduction to algebra via examples. The book moves from properties of integers, through other examples, to the beginnings of group theory. Applications to public key codes and to error correcting codes are emphasised. These applications, together with sections on logic and finite state machines, make the text suitable for students of computer science as well as mathematics students. Attention is paid to historical development of the mathematical ideas. This second edition contains new material on mathematical reasoning skills and a new chapter on polynomials has been added. The book was developed from first-level courses taught in the UK and USA. These courses proved successful in developing not only a theoretical understanding but also algorithmic skills. This book can be used at a wide range of levels: it is suitable for first- or second-level university students, and could be used as enrichment material for upper-level school students.



A Course in the Theory of Groups

A Course in the Theory of Groups Author Derek Robinson
ISBN-10 9781468401288
Release 2012-12-06
Pages 481
Download Link Click Here

" A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of algebraic equations. Their groups consisted of permutations of the variables or of the roots of polynomials, and indeed for much of the nineteenth century all groups were finite permutation groups. Nevertheless many of the fundamental ideas of group theory were introduced by these early workers and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-1918), Camille Jordan (1838-1922) among others. The concept of an abstract group is clearly recognizable in the work of Arthur Cayley (1821-1895) but it did not really win widespread acceptance until Walther von Dyck (1856-1934) introduced presentations of groups.



A First Course in Noncommutative Rings

A First Course in Noncommutative Rings Author T.Y. Lam
ISBN-10 9781468404067
Release 2012-12-06
Pages 397
Download Link Click Here

One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.



Introduction to Abstract Algebra

Introduction to Abstract Algebra Author Jonathan D. H. Smith
ISBN-10 1420063723
Release 2016-04-19
Pages 344
Download Link Click Here

Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles. A Quick Introduction to Algebra The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduce rational numbers and modular arithmetic as well as to present the first isomorphism theorem at the set level. The Basics of Abstract Algebra for a First-Semester Course Subsequent chapters cover orthogonal groups, stochastic matrices, Lagrange’s theorem, and groups of units of monoids. The text also deals with homomorphisms, which lead to Cayley’s theorem of reducing abstract groups to concrete groups of permutations. It then explores rings, integral domains, and fields. Advanced Topics for a Second-Semester Course The final, mostly self-contained chapters delve deeper into the theory of rings, fields, and groups. They discuss modules (such as vector spaces and abelian groups), group theory, and quasigroups.



Elements of Abstract Algebra

Elements of Abstract Algebra Author Allan Clark
ISBN-10 9780486140353
Release 2012-07-06
Pages 224
Download Link Click Here

Lucid coverage of the major theories of abstract algebra, with helpful illustrations and exercises included throughout. Unabridged, corrected republication of the work originally published 1971. Bibliography. Index. Includes 24 tables and figures.



Advanced Modern Algebra Third Edition Part 2

Advanced Modern Algebra  Third Edition  Part 2 Author Joseph J. Rotman
ISBN-10 9781470423117
Release 2017-08-15
Pages 558
Download Link Click Here

This book is the second part of the new edition of Advanced Modern Algebra (the first part published as Graduate Studies in Mathematics, Volume 165). Compared to the previous edition, the material has been significantly reorganized and many sections have been rewritten. The book presents many topics mentioned in the first part in greater depth and in more detail. The five chapters of the book are devoted to group theory, representation theory, homological algebra, categories, and commutative algebra, respectively. The book can be used as a text for a second abstract algebra graduate course, as a source of additional material to a first abstract algebra graduate course, or for self-study.



Basic Abstract Algebra

Basic Abstract Algebra Author Robert B. Ash
ISBN-10 9780486318110
Release 2013-06-17
Pages 432
Download Link Click Here

Relations between groups and sets, results and methods of abstract algebra in terms of number theory and geometry, and noncommutative and homological algebra. Solutions. 2006 edition.



Introduction to Abstract Algebra Third Edition

Introduction to Abstract Algebra  Third Edition Author T.A. Whitelaw
ISBN-10 0751401471
Release 1995-05-15
Pages 256
Download Link Click Here

The first and second editions of this successful textbook have been highly praised for their lucid and detailed coverage of abstract algebra. In this third edition, the author has carefully revised and extended his treatment, particularly the material on rings and fields, to provide an even more satisfying first course in abstract algebra.



Groups and Symmetry

Groups and Symmetry Author Mark A. Armstrong
ISBN-10 9781475740349
Release 2013-03-14
Pages 187
Download Link Click Here

This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.