Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Shock Wave Reflection Phenomena

Shock Wave Reflection Phenomena Author Gabi Ben-Dor
ISBN-10 9781475742794
Release 2013-06-29
Pages 309
Download Link Click Here

The phenomenon of shock wave reflection was first reported by the distinguished philosopher Ernst Mach in 1878. Its study was then abandoned for a period of about 60 years until its investigation was initiated in the early 1940s by Professor John von Neumann and Professor Bleakney. Under their supervision, 15 years of intensive research related to various aspects of the reflection of shock waves in pseudo-steady flows were carried out. It was during this period that the four basic shock wave reflection configurations were discovered. Then, for a period of about 10 years from the mid 1950s until the mid 1960s, investigation of the reflection phenomenon of shock waves was kept on a low flame all over the world (e. g. Australia, Japan, Canada, U. S. A. , U. S. S. R. , etc. ) until Professor Bazhenova from the U. S. S. R. , Professor Irvine Glass from Canada, and Professor Roy Henderson from Australia re initiated the study of this and related phenomena. Under their scientific supervision and leadership, numerous findings related to this phenomenon were reported. Probably the most productive research group in the mid 1970s was that led by Professor Irvine Glass in the Institute of Aerospace Studies of the University of Toronto. In 1978, exactly 100 years after Ernst Mach first reported his discovery of the reflection phenomenon, I published my Ph. D. thesis in which, for the first time, analytical transition criteria between the various shock wave reflection configurations were established.



Blast Waves

Blast Waves Author Charles E. Needham
ISBN-10 3642052886
Release 2010-03-17
Pages 320
Download Link Click Here

As an editor of the international scienti?c journal Shock Waves, I was asked whether I might document some of my experience and knowledge in the ?eld of blast waves. I began an outline for a book on the basis of a short course that I had been teaching for several years. I added to the outline, ?lling in details and including recent devel- ments, especially in the subjects of height of burst curves and nonideal explosives. At a recent meeting of the International Symposium on the Interaction of Shock Waves, I was asked to write the book I had said I was working on. As a senior advisor to a group working on computational ?uid dynamics, I found that I was repeating many useful rules and conservation laws as new people came into the group. The transfer of knowledge was hit and miss as questions arose during the normal work day. Although I had developed a short course on blast waves, it was not practical to teach the full course every time a new member was added to the group. This was suf?cient incentive for me to undertake the writing of this book. I cut my work schedule to part time for two years while writing the book. This allowed me to remain heavily involved in ongoing and leading edge work in hydrodynamics while documenting this somewhat historical perspective on blast waves.



Test Methods for Explosives

Test Methods for Explosives Author Muhamed Suceska
ISBN-10 9781461207979
Release 2012-12-06
Pages 225
Download Link Click Here

It seems that there is no book that treats the measurement of the physical pa rameters of explosives as its only subject, although limited information is avail able in a number of books. Therefore, I have tried to bridge this gap in the lit erature with this book. A large number of various physical parameters have to be determined ex perimentally in order to test or characterise an explosive. Various physical principles have been applied for such measurements. Accordingly, a large number of different experimental methods exist, as well as various testing appa ratuses and procedures. On the other hand, great progress has been made recently in the study of detonation phenomena. New measuring techniques can assess extremely short processes to below nanoseconds scale. They make it possible to determine im portant parameters in detonation physics. I have made a great attempt to cover the available literature data on the subject. Because it would be a highly demanding task to include in a single volume all the methods that are in use by various testing agencies, I have tried to give primarily the principles for determination of individual physical pa rameters of explosives by different measuring methods as well as data treatment procedures.



Explosive Effects and Applications

Explosive Effects and Applications Author Jonas A. Zukas
ISBN-10 9781461205890
Release 2013-12-01
Pages 433
Download Link Click Here

This is a broad-based text on the fundamentals of explosive behavior and the application of explosives in civil engineering, industrial processes, aerospace applications, and military uses.



Shock Wave Phenomena and the Properties of Condensed Matter

Shock Wave Phenomena and the Properties of Condensed Matter Author Gennady I. Kanel
ISBN-10 9781475742824
Release 2013-06-29
Pages 322
Download Link Click Here

One of the main goals of investigations of shock-wave phenomena in condensed matter is to develop methods for predicting effects of explosions, high-velocity collisions, and other kinds of intense dynamic loading of materials and structures. Based on the results of international research conducted over the past 30 years, this book is addressed not only to experts in shock-wave physics, but also to interested representatives from adjacent fields of activity and to students who seek an introduction to the current issues.



Dimensional Analysis Beyond the Pi Theorem

Dimensional Analysis Beyond the Pi Theorem Author Bahman Zohuri
ISBN-10 9783319457260
Release 2016-11-02
Pages 266
Download Link Click Here

Dimensional Analysis and Physical Similarity are well understood subjects, and the general concepts of dynamical similarity are explained in this book. Our exposition is essentially different from those available in the literature, although it follows the general ideas known as Pi Theorem. There are many excellent books that one can refer to; however, dimensional analysis goes beyond Pi theorem, which is also known as Buckingham’s Pi Theorem. Many techniques via self-similar solutions can bound solutions to problems that seem intractable. A time-developing phenomenon is called self-similar if the spatial distributions of its properties at different points in time can be obtained from one another by a similarity transformation, and identifying one of the independent variables as time. However, this is where Dimensional Analysis goes beyond Pi Theorem into self-similarity, which has represented progress for researchers. In recent years there has been a surge of interest in self-similar solutions of the First and Second kind. Such solutions are not newly discovered; they have been identified and named by Zel’dovich, a famous Russian Mathematician in 1956. They have been used in the context of a variety of problems, such as shock waves in gas dynamics, and filtration through elasto-plastic materials. Self-Similarity has simplified computations and the representation of the properties of phenomena under investigation. It handles experimental data, reduces what would be a random cloud of empirical points to lie on a single curve or surface, and constructs procedures that are self-similar. Variables can be specifically chosen for the calculations.



Fundamentals of Shock Wave Propagation in Solids

Fundamentals of Shock Wave Propagation in Solids Author Lee Davison
ISBN-10 9783540745693
Release 2008-04-24
Pages 433
Download Link Click Here

My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.



Fundamentals of Shock Wave Propagation in Solids

Fundamentals of Shock Wave Propagation in Solids Author Lee Davison
ISBN-10 9783540745686
Release 2008-05-07
Pages 433
Download Link Click Here

My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.



Static Compression of Energetic Materials

Static Compression of Energetic Materials Author Suhithi M. Peiris
ISBN-10 9783540681519
Release 2009-01-03
Pages 330
Download Link Click Here

Developing and testing novel energetic materials is an expanding branch of the materials sciences. Reaction, detonation or explosion of such materials invariably produce extremely high pressures and temperatures. To study the equations-of-state (EOS) of energetic materials in extreme regimes both shock and static high pressure studies are required. The present volume is an introduction and review of theoretical, experimental and numerical aspects of static compression of such materials. Chapter 1 introduces the basic experimental tool, the diamond anvil pressure cell and the observational techniques used with it such as optical microscopy, infrared spectrometry and x-ray diffraction. Chapter 2 outlines the principles of high-nitrogen energetic materials synthesis. Chapters 3 and 4, examine and compare various EOS formalisms and data fitting for crystalline and non-crystalline materials, respectively. Chapter 5 details the reaction kinetics of detonating energetic materials. Chapter 6 investigates the interplay between static and dynamic (shock) studies. Finally, Chapters 7 and 8 introduce numerical simulations: molecular dynamics of energetic materials under either hydrostatic or uni-axial stress and ab-inito treatments of defects in crystalline materials. This timely volume meets the growing demand for a state-of-the art introduction and review of the most relevant aspects of static compression of energetic materials and will be a valuable reference to researchers and scientists working in academic, industrial and governmental research laboratories.



28th International Symposium on Shock Waves

28th International Symposium on Shock Waves Author Konstantinos Kontis
ISBN-10 9783642256882
Release 2012-03-14
Pages 824
Download Link Click Here

The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.



Shock Focusing Phenomena

Shock Focusing Phenomena Author Nicholas Apazidis
ISBN-10 9783319758664
Release 2018-05-18
Pages 158
Download Link Click Here

One of the main reasons for continuing interest in shock focusing is its ability to concentrate energy in a small volume and produce extreme temperatures and pressures in fluids in a controlled laboratory environment. The phenomenon of shock wave focusing leading to extreme conditions in fluids during micro- and nanosecond time intervals is a spectacular example of mechanics at small length and time scales revealing the major properties of shock dynamics including high-temperature gas phenomena. Production of high-energy concentrations in gases and fluids with star-like temperatures and extreme pressures by means of a stable imploding shock is of great interest not only in its own right but also because of the connection to a multitude of phenomena in nature, technology and medicine.



Shock Compression of Condensed Matter 1991

Shock Compression of Condensed Matter   1991 Author S.C. Schmidt
ISBN-10 9781483291451
Release 2016-07-29
Pages 1102
Download Link Click Here

The papers collected together in this volume constitute a review of recent research on the response of condensed matter to dynamic high pressures and temperatures. Inlcuded are sections on equations of state, phase transitions, material properties, explosive behavior, measurement techniques, and optical and laser studies. Recent developments in this area such as studies of impact and penetration phenomenology, the development of materials, especially ceramics and molecular dynamics and Monte Carlo simulations are also covered. These latest advances, in addition to the many other results and topics covered by the authors, serve to make this volume the most authoritative source for the shock wave physics community.



High Pressure Shock Compression of Solids VIII

High Pressure Shock Compression of Solids VIII Author L.C. Chhabildas
ISBN-10 9783540271680
Release 2006-03-30
Pages 380
Download Link Click Here

Research in the field of shock physics and ballistic impact has always been intimately tied to progress in development of facilities for accelerating projectiles to high velocity and instrumentation for recording impact phenomena. The chapters of this book, written by leading US and European experts, cover a broad range of topics and address researchers concerned with questions of material behaviour under impulsive loading and the equations of state of matter, as well as the design of suitable instrumentation such as gas guns and high-speed diagnostics. Applications include high-speed impact dynamics, the inner composition of planets, syntheses of new materials and materials processing. Among the more technologically oriented applications treated is the testing of the flight characteristics of aeroballistic models and the assessment of impacts in the aerospace industry.



High Energy Density Physics

High Energy Density Physics Author R. Paul Drake
ISBN-10 9783540293149
Release 2006-04-20
Pages 534
Download Link Click Here

The raw numbers of high-energy-density physics are amazing: shock waves at hundreds of km/s (approaching a million km per hour), temperatures of millions of degrees, and pressures that exceed 100 million atmospheres. This book introduces the reader to the fundamental tools and discoveries of high-energy-density physics. It surveys the production of high-energy-density conditions, the fundamental plasma and hydrodynamic models that can describe them and the problem of scaling from the laboratory to the cosmos. Connections to astrophysics are discussed throughout. The book is intended to support coursework in high-energy-density physics, to meet the needs of new researchers in this field, and also to serve as a useful reference on the fundamentals. Specifically the book has been designed to enable academics in physics, astrophysics, applied physics and engineering departments to provide in a single-course introduction to fluid mechanics and radiative transfer, with dramatic applications in the field of high-energy-density systems.



29th International Symposium on Shock Waves 1

29th International Symposium on Shock Waves 1 Author Riccardo Bonazza
ISBN-10 9783319168357
Release 2015-07-09
Pages 820
Download Link Click Here

This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.



High Velocity Impact Phenomena

High Velocity Impact Phenomena Author Ray Kinslow
ISBN-10 9780323144988
Release 2012-12-02
Pages 592
Download Link Click Here

High-Velocity Impact Phenomena covers a wide range of pertinent topics dealing with impact phenomena. The book discusses hypervelocity accelerators; stress wave propagation in solids; and the theory of impact. The text also describes the application of the theory of impact on thin targets and shields and correlation with experiment; the numerical evaluation of hypervelocity impact phenomena; and analytical studies of impact-generated shock propagation. The equation of state of solids from shock wave studies; metallurgical observations and energy partitioning; and engineering considerations in hypervelocity impact are also encompassed. Design engineers will find the book invaluable.



Medical and Biomedical Applications of Shock Waves

Medical and Biomedical Applications of Shock Waves Author Achim M. Loske
ISBN-10 9783319475707
Release 2016-12-01
Pages 378
Download Link Click Here

This book provides current, comprehensive, and clear explanations of the physics behind medical and biomedical applications of shock waves. Extracorporeal shock wave lithotripsy is one of the greatest medical advances of our time, and its techniques and clinical devices are continuously evolving. Further research continues to improve the understanding of calculi fragmentation and tissue-damaging mechanisms. Shock waves are also used in orthopedics and traumatology. Possible applications in oncology, cardiology, dentistry, gene therapy, cell transfection, transformation of fungi and bacteria, as well as the inactivation of microorganisms are promising approaches for clinical treatment, industrial applications and research. Medical and Biomedical Applications of Shock Waves is useful as a guide for students, technicians and researchers working in universities and laboratories. Chemists, biologists, physicians and veterinarians, involved in research or clinical practice will find useful advice, but also engineers and physicists may benefit from the overview of current research endeavors and future directions. Furthermore, it may also serve to direct manufacturers towards the design of more efficient and safer clinical, industrial and laboratory equipment.