Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Spatial Cluster Modelling

Spatial Cluster Modelling Author Andrew B. Lawson
ISBN-10 9781420035414
Release 2002-05-16
Pages 304
Download Link Click Here

Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal cluster modelling. Many figures, some in full color, complement the text, and a single section of references cited makes it easy to locate source material. Leading specialists in the field of cluster modelling authored each chapter, and an introduction by the editors to each chapter provides a cohesion not typically found in contributed works. Spatial Cluster Modelling thus offers a singular opportunity to explore this exciting new field, understand its techniques, and apply them in your own research.



Robust Cluster Analysis and Variable Selection

Robust Cluster Analysis and Variable Selection Author Gunter Ritter
ISBN-10 9781439857960
Release 2014-09-02
Pages 392
Download Link Click Here

Clustering remains a vibrant area of research in statistics. Although there are many books on this topic, there are relatively few that are well founded in the theoretical aspects. In Robust Cluster Analysis and Variable Selection, Gunter Ritter presents an overview of the theory and applications of probabilistic clustering and variable selection, synthesizing the key research results of the last 50 years. The author focuses on the robust clustering methods he found to be the most useful on simulated data and real-time applications. The book provides clear guidance for the varying needs of both applications, describing scenarios in which accuracy and speed are the primary goals. Robust Cluster Analysis and Variable Selection includes all of the important theoretical details, and covers the key probabilistic models, robustness issues, optimization algorithms, validation techniques, and variable selection methods. The book illustrates the different methods with simulated data and applies them to real-world data sets that can be easily downloaded from the web. This provides you with guidance in how to use clustering methods as well as applicable procedures and algorithms without having to understand their probabilistic fundamentals.



Spatial Statistics and Computational Methods

Spatial Statistics and Computational Methods Author Jesper Møller
ISBN-10 9780387218113
Release 2013-04-17
Pages 205
Download Link Click Here

This volume shows how sophisticated spatial statistical and computational methods apply to a range of problems of increasing importance for applications in science and technology. It introduces topics of current interest in spatial and computational statistics, which should be accessible to postgraduate students as well as to experienced statistical researchers.



Computational Science and Its Applications ICCSA 2008

Computational Science and Its Applications   ICCSA 2008 Author Osvaldo Gervasi
ISBN-10 9783540698388
Release 2008-06-24
Pages 1266
Download Link Click Here

The two-volume set LNCS 5072 and 5073 constitutes the refereed proceedings of the International Conference on Computational Science and Its Applications, ICCSA 2008, held in Perugia, Italy, in June/July, 2008. The two volumes contain papers presenting a wealth of original research results in the field of computational science, from foundational issues in computer science and mathematics to advanced applications in virtually all sciences making use of computational techniques. The topics of the fully refereed papers are structured according to the five major conference themes: computational methods, algorithms and scientific applications, high performance technical computing and networks, advanced and emerging applications, geometric modelling, graphics and visualization, as well as information systems and information technologies. Moreover, submissions from more than 20 workshops and technical sessions in the areas, such as embedded systems, geographical analysis, computational geometry, computational geomatics, computer graphics, virtual reality, computer modeling, computer algebra, mobile communications, wireless networks, computational forensics, data storage, information security, web learning, software engineering, computational intelligence, digital security, biometrics, molecular structures, material design, ubiquitous computing, symbolic computations, web systems and intelligence, and e-education contribute to this publication.



Statistical Analysis of Spatial and Spatio Temporal Point Patterns Third Edition

Statistical Analysis of Spatial and Spatio Temporal Point Patterns  Third Edition Author Peter J. Diggle
ISBN-10 9781466560246
Release 2013-07-23
Pages 268
Download Link Click Here

Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author’s website.



Topics in Modelling of Clustered Data

Topics in Modelling of Clustered Data Author Marc Aerts
ISBN-10 9781420035889
Release 2002-05-29
Pages 336
Download Link Click Here

Many methods for analyzing clustered data exist, all with advantages and limitations in particular applications. Compiled from the contributions of leading specialists in the field, Topics in Modelling of Clustered Data describes the tools and techniques for modelling the clustered data often encountered in medical, biological, environmental, and social science studies. It focuses on providing a comprehensive treatment of marginal, conditional, and random effects models using, among others, likelihood, pseudo-likelihood, and generalized estimating equations methods. The authors motivate and illustrate all aspects of these models in a variety of real applications. They discuss several variations and extensions, including individual-level covariates and combined continuous and discrete outcomes. Flexible modelling with fractional and local polynomials, omnibus lack-of-fit tests, robustification against misspecification, exact, and bootstrap inferential procedures all receive extensive treatment. The applications discussed center primarily, but not exclusively, on developmental toxicity, which leads naturally to discussion of other methodologies, including risk assessment and dose-response modelling. Clearly written, Topics in Modelling of Clustered Data offers a practical, easily accessible survey of important modelling issues. Overview models give structure to a multitude of approaches, figures help readers visualize model characteristics, and a generous use of examples illustrates all aspects of the modelling process.



Medical Applications of Finite Mixture Models

Medical Applications of Finite Mixture Models Author Peter Schlattmann
ISBN-10 9783540686514
Release 2009-03-02
Pages 246
Download Link Click Here

Patients are not alike! This simple truth is often ignored in the analysis of me- cal data, since most of the time results are presented for the “average” patient. As a result, potential variability between patients is ignored when presenting, e.g., the results of a multiple linear regression model. In medicine there are more and more attempts to individualize therapy; thus, from the author’s point of view biostatis- cians should support these efforts. Therefore, one of the tasks of the statistician is to identify heterogeneity of patients and, if possible, to explain part of it with known explanatory covariates. Finite mixture models may be used to aid this purpose. This book tries to show that there are a large range of applications. They include the analysis of gene - pression data, pharmacokinetics, toxicology, and the determinants of beta-carotene plasma levels. Other examples include disease clustering, data from psychophysi- ogy, and meta-analysis of published studies. The book is intended as a resource for those interested in applying these methods.



Statistical Inference and Simulation for Spatial Point Processes

Statistical Inference and Simulation for Spatial Point Processes Author Jesper Moller
ISBN-10 0203496930
Release 2003-09-25
Pages 320
Download Link Click Here

Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.



Point Processes

Point Processes Author D.R. Cox
ISBN-10 0412219107
Release 1980-07-17
Pages 188
Download Link Click Here

Theoretical framework; Special models; Operations on point processes; Multivariate point processes; Spatial processes.



Gaussian Markov Random Fields

Gaussian Markov Random Fields Author Havard Rue
ISBN-10 0203492021
Release 2005-02-18
Pages 280
Download Link Click Here

Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studies and, online, a c-library for fast and exact simulation. With chapters contributed by leading researchers in the field, this volume is essential reading for statisticians working in spatial theory and its applications, as well as quantitative researchers in a wide range of science fields where spatial data analysis is important.



Stochastic Geometry

Stochastic Geometry Author A. Baddeley
ISBN-10 9783540381754
Release 2006-10-26
Pages 292
Download Link Click Here

Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures. This book collects lectures presented at the CIME summer school in Martina Franca in September 2004. The main lecturers covered Spatial Statistics, Random Points, Integral Geometry and Random Sets. These are complemented by two additional contributions on Random Mosaics and Crystallization Processes. The book presents a comprehensive and up-to-date description of important aspects of Stochastic Geometry.



Statistical Learning with Sparsity

Statistical Learning with Sparsity Author Trevor Hastie
ISBN-10 9781498712170
Release 2015-05-07
Pages 367
Download Link Click Here

Discover New Methods for Dealing with High-Dimensional Data A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data. Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of l1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso. In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.



Spatial Point Patterns

Spatial Point Patterns Author Adrian Baddeley
ISBN-10 9781482210217
Release 2015-11-11
Pages 810
Download Link Click Here

Modern Statistical Methodology and Software for Analyzing Spatial Point Patterns Spatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on their 25 years of software development experiences, methodological research, and broad scientific collaborations to deliver a book that clearly and succinctly explains concepts and addresses real scientific questions. Practical Advice on Data Analysis and Guidance on the Validity and Applicability of Methods The first part of the book gives an introduction to R software, advice about collecting data, information about handling and manipulating data, and an accessible introduction to the basic concepts of point processes. The second part presents tools for exploratory data analysis, including non-parametric estimation of intensity, correlation, and spacing properties. The third part discusses model-fitting and statistical inference for point patterns. The final part describes point patterns with additional "structure," such as complicated marks, space-time observations, three- and higher-dimensional spaces, replicated observations, and point patterns constrained to a network of lines. Easily Analyze Your Own Data Throughout the book, the authors use their spatstat package, which is free, open-source code written in the R language. This package provides a wide range of capabilities for spatial point pattern data, from basic data handling to advanced analytic tools. The book focuses on practical needs from the user’s perspective, offering answers to the most frequently asked questions in each chapter.



Bayesian Disease Mapping

Bayesian Disease Mapping Author Andrew B. Lawson
ISBN-10 9781466504820
Release 2013-03-18
Pages 396
Download Link Click Here

Since the publication of the first edition, many new Bayesian tools and methods have been developed for space-time data analysis, the predictive modeling of health outcomes, and other spatial biostatistical areas. Exploring these new developments, Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, Second Edition provides an up-to-date, cohesive account of the full range of Bayesian disease mapping methods and applications. A biostatistics professor and WHO advisor, the author illustrates the use of Bayesian hierarchical modeling in the geographical analysis of disease through a range of real-world datasets. New to the Second Edition Three new chapters on regression and ecological analysis, putative hazard modeling, and disease map surveillance Expanded material on case event modeling and spatiotemporal analysis New and updated examples Two new appendices featuring examples of integrated nested Laplace approximation (INLA) and conditional autoregressive (CAR) models In addition to these new topics, the book covers more conventional areas such as relative risk estimation, clustering, spatial survival analysis, and longitudinal analysis. After an introduction to Bayesian inference, computation, and model assessment, the text focuses on important themes, including disease map reconstruction, cluster detection, regression and ecological analysis, putative hazard modeling, analysis of multiple scales and multiple diseases, spatial survival and longitudinal studies, spatiotemporal methods, and map surveillance. It shows how Bayesian disease mapping can yield significant insights into georeferenced health data. WinBUGS and R are used throughout for data manipulation and simulation.



Finite Mixture and Markov Switching Models

Finite Mixture and Markov Switching Models Author Sylvia Frühwirth-Schnatter
ISBN-10 9780387357683
Release 2006-11-24
Pages 494
Download Link Click Here

The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.



Handbook of Spatial Point Pattern Analysis in Ecology

Handbook of Spatial Point Pattern Analysis in Ecology Author Thorsten Wiegand
ISBN-10 9781420082555
Release 2013-12-20
Pages 538
Download Link Click Here

Understand How to Analyze and Interpret Information in Ecological Point Patterns Although numerous statistical methods for analyzing spatial point patterns have been available for several decades, they haven’t been extensively applied in an ecological context. Addressing this gap, Handbook of Spatial Point-Pattern Analysis in Ecology shows how the techniques of point-pattern analysis are useful for tackling ecological problems. Within an ecological framework, the book guides readers through a variety of methods for different data types and aids in the interpretation of the results obtained by point-pattern analysis. Ideal for empirical ecologists who want to avoid advanced theoretical literature, the book covers statistical techniques for analyzing and interpreting the information contained in ecological patterns. It presents methods used to extract information hidden in spatial point-pattern data that may point to the underlying processes. The authors focus on point processes and null models that have proven their immediate utility for broad ecological applications, such as cluster processes. Along with the techniques, the handbook provides a comprehensive selection of real-world examples. Most of the examples are analyzed using Programita, a continuously updated software package based on the authors’ many years of teaching and collaborative research in ecological point-pattern analysis. Programita is tailored to meet the needs of real-world applications in ecology. The software and a manual are available online.



The Random Cluster Model

The Random Cluster Model Author Geoffrey R. Grimmett
ISBN-10 9783540328919
Release 2006-12-13
Pages 378
Download Link Click Here

The random-cluster model has emerged as a key tool in the mathematical study of ferromagnetism. It may be viewed as an extension of percolation to include Ising and Potts models, and its analysis is a mix of arguments from probability and geometry. The Random-Cluster Model contains accounts of the subcritical and supercritical phases, together with clear statements of important open problems. The book includes treatment of the first-order (discontinuous) phase transition.