Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Statistical Computing in C and R

Statistical Computing in C   and R Author Randall L. Eubank
ISBN-10 9781420066500
Release 2011-12-01
Pages 556
Download Link Click Here

With the advancement of statistical methodology inextricably linked to the use of computers, new methodological ideas must be translated into usable code and then numerically evaluated relative to competing procedures. In response to this, Statistical Computing in C++ and R concentrates on the writing of code rather than the development and study of numerical algorithms per se. The book discusses code development in C++ and R and the use of these symbiotic languages in unison. It emphasizes that each offers distinct features that, when used in tandem, can take code writing beyond what can be obtained from either language alone. The text begins with some basics of object-oriented languages, followed by a "boot-camp" on the use of C++ and R. The authors then discuss code development for the solution of specific computational problems that are relevant to statistics including optimization, numerical linear algebra, and random number generation. Later chapters introduce abstract data structures (ADTs) and parallel computing concepts. The appendices cover R and UNIX Shell programming. Features Includes numerous student exercises ranging from elementary to challenging Integrates both C++ and R for the solution of statistical computing problems Uses C++ code in R and R functions in C++ programs Provides downloadable programs, available from the authors’ website The translation of a mathematical problem into its computational analog (or analogs) is a skill that must be learned, like any other, by actively solving relevant problems. The text reveals the basic principles of algorithmic thinking essential to the modern statistician as well as the fundamental skill of communicating with a computer through the use of the computer languages C++ and R. The book lays the foundation for original code development in a research environment.



Statistical Computing with R

Statistical Computing with R Author Maria L. Rizzo
ISBN-10 9781498786591
Release 2016-05-02
Pages 416
Download Link Click Here

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. One of the first books on these topics to feature R, Statistical Computing with R covers the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. Suitable for an introductory course in computational statistics or for self-study, it includes R code for all examples and R notes to help explain the R programming concepts. After an overview of computational statistics and an introduction to the R computing environment, the book reviews some basic concepts in probability and classical statistical inference. Each subsequent chapter explores a specific topic in computational statistics. These chapters cover the simulation of random variables from probability distributions, the visualization of multivariate data, Monte Carlo integration and variance reduction methods, Monte Carlo methods in inference, bootstrap and jackknife, permutation tests, Markov chain Monte Carlo (MCMC) methods, and density estimation. The final chapter presents a selection of examples that illustrate the application of numerical methods using R functions. Focusing on implementation rather than theory, this text serves as a balanced, accessible introduction to computational statistics and statistical computing.



Computational Actuarial Science with R

Computational Actuarial Science with R Author Arthur Charpentier
ISBN-10 9781498759823
Release 2015-09-15
Pages 656
Download Link Click Here

A Hands-On Approach to Understanding and Using Actuarial Models Computational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/C++ embedded codes. After an introduction to the R language, the book is divided into four parts. The first one addresses methodology and statistical modeling issues. The second part discusses the computational facets of life insurance, including life contingencies calculations and prospective life tables. Focusing on finance from an actuarial perspective, the next part presents techniques for modeling stock prices, nonlinear time series, yield curves, interest rates, and portfolio optimization. The last part explains how to use R to deal with computational issues of nonlife insurance. Taking a do-it-yourself approach to understanding algorithms, this book demystifies the computational aspects of actuarial science. It shows that even complex computations can usually be done without too much trouble. Datasets used in the text are available in an R package (CASdatasets).



Using R for Introductory Statistics

Using R for Introductory Statistics Author John Verzani
ISBN-10 9780203499894
Release 2004-11-29
Pages 432
Download Link Click Here

The cost of statistical computing software has precluded many universities from installing these valuable computational and analytical tools. R, a powerful open-source software package, was created in response to this issue. It has enjoyed explosive growth since its introduction, owing to its coherence, flexibility, and free availability. While it is a valuable tool for students who are first learning statistics, proper introductory materials are needed for its adoption. Using R for Introductory Statistics fills this gap in the literature, making the software accessible to the introductory student. The author presents a self-contained treatment of statistical topics and the intricacies of the R software. The pacing is such that students are able to master data manipulation and exploration before diving into more advanced statistical concepts. The book treats exploratory data analysis with more attention than is typical, includes a chapter on simulation, and provides a unified approach to linear models. This text lays the foundation for further study and development in statistics using R. Appendices cover installation, graphical user interfaces, and teaching with R, as well as information on writing functions and producing graphics. This is an ideal text for integrating the study of statistics with a powerful computational tool.



Parallel Computing for Data Science

Parallel Computing for Data Science Author Norman Matloff
ISBN-10 9781466587038
Release 2015-06-04
Pages 328
Download Link Click Here

Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic "n observations, p variables" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming. With the main focus on computation, the book shows how to compute on three types of platforms: multicore systems, clusters, and graphics processing units (GPUs). It also discusses software packages that span more than one type of hardware and can be used from more than one type of programming language. Readers will find that the foundation established in this book will generalize well to other languages, such as Python and Julia.



The R Book

The R Book Author Michael J. Crawley
ISBN-10 9781118448960
Release 2012-11-07
Pages 1080
Download Link Click Here

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)



R and MATLAB

R and MATLAB Author David E. Hiebeler
ISBN-10 9781466568396
Release 2015-06-09
Pages 233
Download Link Click Here

The First Book to Explain How a User of R or MATLAB Can Benefit from the Other In today’s increasingly interdisciplinary world, R and MATLAB® users from different backgrounds must often work together and share code. R and MATLAB® is designed for users who already know R or MATLAB and now need to learn the other platform. The book makes the transition from one platform to the other as quick and painless as possible. Enables R and MATLAB Users to Easily Collaborate and Share Code The author covers essential tasks, such as working with matrices and vectors, writing functions and other programming concepts, graphics, numerical computing, and file input/output. He highlights important differences between the two platforms and explores common mistakes that are easy to make when transitioning from one platform to the other.



Seamless R and C Integration with Rcpp

Seamless R and C   Integration with Rcpp Author Dirk Eddelbuettel
ISBN-10 9781461468684
Release 2013-06-04
Pages 220
Download Link Click Here

Rcpp is the glue that binds the power and versatility of R with the speed and efficiency of C++. With Rcpp, the transfer of data between R and C++ is nearly seamless, and high-performance statistical computing is finally accessible to most R users. Rcpp should be part of every statistician's toolbox. -- Michael Braun, MIT Sloan School of Management "Seamless R and C++ integration with Rcpp" is simply a wonderful book. For anyone who uses C/C++ and R, it is an indispensable resource. The writing is outstanding. A huge bonus is the section on applications. This section covers the matrix packages Armadillo and Eigen and the GNU Scientific Library as well as RInside which enables you to use R inside C++. These applications are what most of us need to know to really do scientific programming with R and C++. I love this book. -- Robert McCulloch, University of Chicago Booth School of Business Rcpp is now considered an essential package for anybody doing serious computational research using R. Dirk's book is an excellent companion and takes the reader from a gentle introduction to more advanced applications via numerous examples and efficiency enhancing gems. The book is packed with all you might have ever wanted to know about Rcpp, its cousins (RcppArmadillo, RcppEigen .etc.), modules, package development and sugar. Overall, this book is a must-have on your shelf. -- Sanjog Misra, UCLA Anderson School of Management The Rcpp package represents a major leap forward for scientific computations with R. With very few lines of C++ code, one has R's data structures readily at hand for further computations in C++. Hence, high-level numerical programming can be made in C++ almost as easily as in R, but often with a substantial speed gain. Dirk is a crucial person in these developments, and his book takes the reader from the first fragile steps on to using the full Rcpp machinery. A very recommended book! -- Søren Højsgaard, Department of Mathematical Sciences, Aalborg University, Denmark "Seamless R and C ++ Integration with Rcpp" provides the first comprehensive introduction to Rcpp. Rcpp has become the most widely-used language extension for R, and is deployed by over one-hundred different CRAN and BioConductor packages. Rcpp permits users to pass scalars, vectors, matrices, list or entire R objects back and forth between R and C++ with ease. This brings the depth of the R analysis framework together with the power, speed, and efficiency of C++. Dirk Eddelbuettel has been a contributor to CRAN for over a decade and maintains around twenty packages. He is the Debian/Ubuntu maintainer for R and other quantitative software, edits the CRAN Task Views for Finance and High-Performance Computing, is a co-founder of the annual R/Finance conference, and an editor of the Journal of Statistical Software. He holds a Ph.D. in Mathematical Economics from EHESS (Paris), and works in Chicago as a Senior Quantitative Analyst.



Advanced R

Advanced R Author Hadley Wickham
ISBN-10 9781498759809
Release 2015-09-15
Pages 476
Download Link Click Here

An Essential Reference for Intermediate and Advanced R Programmers Advanced R presents useful tools and techniques for attacking many types of R programming problems, helping you avoid mistakes and dead ends. With more than ten years of experience programming in R, the author illustrates the elegance, beauty, and flexibility at the heart of R. The book develops the necessary skills to produce quality code that can be used in a variety of circumstances. You will learn: The fundamentals of R, including standard data types and functions Functional programming as a useful framework for solving wide classes of problems The positives and negatives of metaprogramming How to write fast, memory-efficient code This book not only helps current R users become R programmers but also shows existing programmers what’s special about R. Intermediate R programmers can dive deeper into R and learn new strategies for solving diverse problems while programmers from other languages can learn the details of R and understand why R works the way it does.



Extending R

Extending R Author John M. Chambers
ISBN-10 9781315349879
Release 2017-12-21
Pages 364
Download Link Click Here

Up-to-Date Guidance from One of the Foremost Members of the R Core Team Written by John M. Chambers, the leading developer of the original S software, Extending R covers key concepts and techniques in R to support analysis and research projects. It presents the core ideas of R, provides programming guidance for projects of all scales, and introduces new, valuable techniques that extend R. The book first describes the fundamental characteristics and background of R, giving readers a foundation for the remainder of the text. It next discusses topics relevant to programming with R, including the apparatus that supports extensions. The book then extends R’s data structures through object-oriented programming, which is the key technique for coping with complexity. The book also incorporates a new structure for interfaces applicable to a variety of languages. A reflection of what R is today, this guide explains how to design and organize extensions to R by correctly using objects, functions, and interfaces. It enables current and future users to add their own contributions and packages to R.



bookdown

bookdown Author Yihui Xie
ISBN-10 9781351792608
Release 2016-12-12
Pages 138
Download Link Click Here

bookdown: Authoring Books and Technical Documents with R Markdown presents a much easier way to write books and technical publications than traditional tools such as LaTeX and Word. The bookdown package inherits the simplicity of syntax and flexibility for data analysis from R Markdown, and extends R Markdown for technical writing, so that you can make better use of document elements such as figures, tables, equations, theorems, citations, and references. Similar to LaTeX, you can number and cross-reference these elements with bookdown. Your document can even include live examples so readers can interact with them while reading the book. The book can be rendered to multiple output formats, including LaTeX/PDF, HTML, EPUB, and Word, thus making it easy to put your documents online. The style and theme of these output formats can be customized. We used books and R primarily for examples in this book, but bookdown is not only for books or R. Most features introduced in this book also apply to other types of publications: journal papers, reports, dissertations, course handouts, study notes, and even novels. You do not have to use R, either. Other choices of computing languages include Python, C, C++, SQL, Bash, Stan, JavaScript, and so on, although R is best supported. You can also leave out computing, for example, to write a fiction. This book itself is an example of publishing with bookdown and R Markdown, and its source is fully available on GitHub.



Introduction to Scientific Programming and Simulation Using R Second Edition

Introduction to Scientific Programming and Simulation Using R  Second Edition Author Owen Jones
ISBN-10 9781466570016
Release 2014-06-12
Pages 606
Download Link Click Here

Learn How to Program Stochastic Models Highly recommended, the best-selling first edition of Introduction to Scientific Programming and Simulation Using R was lauded as an excellent, easy-to-read introduction with extensive examples and exercises. This second edition continues to introduce scientific programming and stochastic modelling in a clear, practical, and thorough way. Readers learn programming by experimenting with the provided R code and data. The book’s four parts teach: Core knowledge of R and programming concepts How to think about mathematics from a numerical point of view, including the application of these concepts to root finding, numerical integration, and optimisation Essentials of probability, random variables, and expectation required to understand simulation Stochastic modelling and simulation, including random number generation and Monte Carlo integration In a new chapter on systems of ordinary differential equations (ODEs), the authors cover the Euler, midpoint, and fourth-order Runge-Kutta (RK4) schemes for solving systems of first-order ODEs. They compare the numerical efficiency of the different schemes experimentally and show how to improve the RK4 scheme by using an adaptive step size. Another new chapter focuses on both discrete- and continuous-time Markov chains. It describes transition and rate matrices, classification of states, limiting behaviour, Kolmogorov forward and backward equations, finite absorbing chains, and expected hitting times. It also presents methods for simulating discrete- and continuous-time chains as well as techniques for defining the state space, including lumping states and supplementary variables. Building readers’ statistical intuition, Introduction to Scientific Programming and Simulation Using R, Second Edition shows how to turn algorithms into code. It is designed for those who want to make tools, not just use them. The code and data are available for download from CRAN.



Dynamic Documents with R and knitr Second Edition

Dynamic Documents with R and knitr  Second Edition Author Yihui Xie
ISBN-10 9781315360706
Release 2017-07-12
Pages 294
Download Link Click Here

Quickly and Easily Write Dynamic Documents Suitable for both beginners and advanced users, Dynamic Documents with R and knitr, Second Edition makes writing statistical reports easier by integrating computing directly with reporting. Reports range from homework, projects, exams, books, blogs, and web pages to virtually any documents related to statistical graphics, computing, and data analysis. The book covers basic applications for beginners while guiding power users in understanding the extensibility of the knitr package. New to the Second Edition A new chapter that introduces R Markdown v2 Changes that reflect improvements in the knitr package New sections on generating tables, defining custom printing methods for objects in code chunks, the C/Fortran engines, the Stan engine, running engines in a persistent session, and starting a local server to serve dynamic documents Boost Your Productivity in Statistical Report Writing and Make Your Scientific Computing with R Reproducible Like its highly praised predecessor, this edition shows you how to improve your efficiency in writing reports. The book takes you from program output to publication-quality reports, helping you fine-tune every aspect of your report.



R Programming for Bioinformatics

R Programming for Bioinformatics Author Robert Gentleman
ISBN-10 1420063685
Release 2008-07-14
Pages 328
Download Link Click Here

Due to its data handling and modeling capabilities as well as its flexibility, R is becoming the most widely used software in bioinformatics. R Programming for Bioinformatics explores the programming skills needed to use this software tool for the solution of bioinformatics and computational biology problems. Drawing on the author’s first-hand experiences as an expert in R, the book begins with coverage on the general properties of the R language, several unique programming aspects of R, and object-oriented programming in R. It presents methods for data input and output as well as database interactions. The author also examines different facets of string handling and manipulations, discusses the interfacing of R with other languages, and describes how to write software packages. He concludes with a discussion on the debugging and profiling of R code. With numerous examples and exercises, this practical guide focuses on developing R programming skills in order to tackle problems encountered in bioinformatics and computational biology.



Testing R Code

Testing R Code Author Richard Cotton
ISBN-10 9781315350516
Release 2017-01-12
Pages 196
Download Link Click Here

Learn how to write R code with fewer bugs. The problem with programming is that you are always one typo away from writing something silly. Likewise with data analysis, a small mistake in your model can lead to a big mistake in your results. Combining the two disciplines means that it is all too easy for a missed minus sign to generate a false prediction that you don’t spot until it’s too late. Testing is the only way to be sure that your code, and your results, are correct. Testing R Code teaches you how to perform development-time testing using the testthat package, allowing you to ensure that your code works as intended. The book also teaches run-time testing using the assertive package; enabling your users to correctly run your code. After beginning with an introduction to testing in R, the book explores more advanced cases such as integrating tests into R packages; testing code that accesses databases; testing C++ code with Rcpp; and testing graphics. Each topic is explained with real-world examples, and has accompanying exercises for readers to practise their skills — only a small amount of experience with R is needed to get started!



Environmental and Ecological Statistics with R Second Edition

Environmental and Ecological Statistics with R  Second Edition Author Song S. Qian
ISBN-10 9781498728737
Release 2016-11-03
Pages 560
Download Link Click Here

Emphasizing the inductive nature of statistical thinking, Environmental and Ecological Statistics with R, Second Edition, connects applied statistics to the environmental and ecological fields. Using examples from published works in the ecological and environmental literature, the book explains the approach to solving a statistical problem, covering model specification, parameter estimation, and model evaluation. It includes many examples to illustrate the statistical methods and presents R code for their implementation. The emphasis is on model interpretation and assessment, and using several core examples throughout the book, the author illustrates the iterative nature of statistical inference. The book starts with a description of commonly used statistical assumptions and exploratory data analysis tools for the verification of these assumptions. It then focuses on the process of building suitable statistical models, including linear and nonlinear models, classification and regression trees, generalized linear models, and multilevel models. It also discusses the use of simulation for model checking, and provides tools for a critical assessment of the developed models. The second edition also includes a complete critique of a threshold model. Environmental and Ecological Statistics with R, Second Edition focuses on statistical modeling and data analysis for environmental and ecological problems. By guiding readers through the process of scientific problem solving and statistical model development, it eases the transition from scientific hypothesis to statistical model.



Nonparametric Statistical Methods Using R

Nonparametric Statistical Methods Using R Author John Kloke
ISBN-10 9781498787277
Release 2016-04-19
Pages 287
Download Link Click Here

A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.