Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Statistics in Human Genetics and Molecular Biology

Statistics in Human Genetics and Molecular Biology Author Cavan Reilly
ISBN-10 1420072641
Release 2009-06-19
Pages 280
Download Link Click Here

Focusing on the roles of different segments of DNA, Statistics in Human Genetics and Molecular Biology provides a basic understanding of problems arising in the analysis of genetics and genomics. It presents statistical applications in genetic mapping, DNA/protein sequence alignment, and analyses of gene expression data from microarray experiments. The text introduces a diverse set of problems and a number of approaches that have been used to address these problems. It discusses basic molecular biology and likelihood-based statistics, along with physical mapping, markers, linkage analysis, parametric and nonparametric linkage, sequence alignment, and feature recognition. The text illustrates the use of methods that are widespread among researchers who analyze genomic data, such as hidden Markov models and the extreme value distribution. It also covers differential gene expression detection as well as classification and cluster analysis using gene expression data sets. Ideal for graduate students in statistics, biostatistics, computer science, and related fields in applied mathematics, this text presents various approaches to help students solve problems at the interface of these areas.



Introduction to Computational Biology

Introduction to Computational Biology Author Michael S. Waterman
ISBN-10 9781351437080
Release 2018-05-02
Pages 448
Download Link Click Here

Biology is in the midst of a era yielding many significant discoveries and promising many more. Unique to this era is the exponential growth in the size of information-packed databases. Inspired by a pressing need to analyze that data, Introduction to Computational Biology explores a new area of expertise that emerged from this fertile field- the combination of biological and information sciences. This introduction describes the mathematical structure of biological data, especially from sequences and chromosomes. After a brief survey of molecular biology, it studies restriction maps of DNA, rough landmark maps of the underlying sequences, and clones and clone maps. It examines problems associated with reading DNA sequences and comparing sequences to finding common patterns. The author then considers that statistics of pattern counts in sequences, RNA secondary structure, and the inference of evolutionary history of related sequences. Introduction to Computational Biology exposes the reader to the fascinating structure of biological data and explains how to treat related combinatorial and statistical problems. Written to describe mathematical formulation and development, this book helps set the stage for even more, truly interdisciplinary work in biology.



Statistical Modeling and Machine Learning for Molecular Biology

Statistical Modeling and Machine Learning for Molecular Biology Author Alan Moses
ISBN-10 9781482258608
Release 2017-01-06
Pages 280
Download Link Click Here

Molecular biologists are performing increasingly large and complicated experiments, but often have little background in data analysis. The book is devoted to teaching the statistical and computational techniques molecular biologists need to analyze their data. It explains the big-picture concepts in data analysis using a wide variety of real-world molecular biological examples such as eQTLs, ortholog identification, motif finding, inference of population structure, protein fold prediction and many more. The book takes a pragmatic approach, focusing on techniques that are based on elegant mathematics yet are the simplest to explain to scientists with little background in computers and statistics.



Computational Genome Analysis

Computational Genome Analysis Author Richard C. Deonier
ISBN-10 9780387288079
Release 2005-12-27
Pages 535
Download Link Click Here

This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.



The British National Bibliography

The British National Bibliography Author Arthur James Wells
ISBN-10 STANFORD:36105211722686
Release 2009
Pages
Download Link Click Here

The British National Bibliography has been writing in one form or another for most of life. You can find so many inspiration from The British National Bibliography also informative, and entertaining. Click DOWNLOAD or Read Online button to get full The British National Bibliography book for free.



Ordered Data Analysis Modeling and Health Research Methods

Ordered Data Analysis  Modeling and Health Research Methods Author Pankaj K. Choudhary
ISBN-10 9783319254333
Release 2015-12-14
Pages 265
Download Link Click Here

This volume presents an eclectic mix of original research articles in areas covering the analysis of ordered data, stochastic modeling and biostatistics. These areas were featured in a conference held at the University of Texas at Dallas from March 7 to 9, 2014 in honor of Professor H. N. Nagaraja’s 60th birthday and his distinguished contributions to statistics. The articles were written by leading experts who were invited to contribute to the volume from among the conference participants. The volume is intended for all researchers with an interest in order statistics, distribution theory, analysis of censored data, stochastic modeling, time series analysis, and statistical methods for the health sciences, including statistical genetics.



Algebraic Statistics for Computational Biology

Algebraic Statistics for Computational Biology Author L. Pachter
ISBN-10 0521857007
Release 2005-08-22
Pages 420
Download Link Click Here

This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.



Randomization Bootstrap and Monte Carlo Methods in Biology Third Edition

Randomization  Bootstrap and Monte Carlo Methods in Biology  Third Edition Author Bryan F.J. Manly
ISBN-10 9781482296419
Release 2006-08-15
Pages 480
Download Link Click Here

Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.



Probabilistic Graphical Models for Genetics Genomics and Postgenomics

Probabilistic Graphical Models for Genetics  Genomics and Postgenomics Author Christine Sinoquet
ISBN-10 9780198709022
Release 2014
Pages 449
Download Link Click Here

At the crossroads between statistics and machine learning, probabilistic graphical models provide a powerful formal framework to model complex data. For instance, Bayesian networks and Markov random fields are two of the most popular probabilistic graphical models. With the rapid advance of high-throughput technologies and their ever decreasing costs, a fast-growing volume of biological data of various types - the so-called ''omics'' - is in need of accurate andefficient methods for modeling, prior to further downstream analysis. As probabilistic graphical models are able to deal with high-dimensional data, it is foreseeable that such models will have aprominent role to play in advances in genome-wide data analyses. Currently, few people are specialists in the design of cutting-edge methods using probabilistic graphical models for genetics, genomics and postgenomics. This seriously hinders the diffusion of such methods. The prime aim of the book is therefore to bring the concepts underlying these advanced models within reach of scientists who are not specialists of these models, but with no concession on theinformativeness of the book. The target readers include researchers and engineers who have to design novel methods for postgenomics data analysis, as well as graduate students starting a Masters or a PhD. Inaddition to an introductory chapter on probabilistic graphical models, a thorough review chapter focusing on selected domains in genetics and fourteen chapters illustrate the design of such advanced approaches in various domains: gene network inference, inference of causal phenotype networks, association genetics, epigenetics, detection of copy number variations, and prediction of outcomes from high-dimensional genomic data. Notably, most examples also illustrate that probabilistic graphicalmodels are well suited for integrative biology and systems biology, hot topics guaranteed to be of lasting interest.



Handbook of Mixed Membership Models and Their Applications

Handbook of Mixed Membership Models and Their Applications Author Edoardo M. Airoldi
ISBN-10 9781466504097
Release 2014-11-06
Pages 618
Download Link Click Here

In response to scientific needs for more diverse and structured explanations of statistical data, researchers have discovered how to model individual data points as belonging to multiple groups. Handbook of Mixed Membership Models and Their Applications shows you how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology. Through examples using real data sets, you’ll discover how to characterize complex multivariate data in: Studies involving genetic databases Patterns in the progression of diseases and disabilities Combinations of topics covered by text documents Political ideology or electorate voting patterns Heterogeneous relationships in networks, and much more The handbook spans more than 20 years of the editors’ and contributors’ statistical work in the field. Top researchers compare partial and mixed membership models, explain how to interpret mixed membership, delve into factor analysis, and describe nonparametric mixed membership models. They also present extensions of the mixed membership model for text analysis, sequence and rank data, and network data as well as semi-supervised mixed membership models.



Bayesian Phylogenetics

Bayesian Phylogenetics Author Ming-Hui Chen
ISBN-10 9781466500792
Release 2014-05-27
Pages 396
Download Link Click Here

Offering a rich diversity of models, Bayesian phylogenetics allows evolutionary biologists, systematists, ecologists, and epidemiologists to obtain answers to very detailed phylogenetic questions. Suitable for graduate-level researchers in statistics and biology, Bayesian Phylogenetics: Methods, Algorithms, and Applications presents a snapshot of current trends in Bayesian phylogenetic research. Encouraging interdisciplinary research, this book introduces state-of-the-art phylogenetics to the Bayesian statistical community and, likewise, presents state-of-the-art Bayesian statistics to the phylogenetics community. The book emphasizes model selection, reflecting recent interest in accurately estimating marginal likelihoods. It also discusses new approaches to improve mixing in Bayesian phylogenetic analyses in which the tree topology varies. In addition, the book covers divergence time estimation, biologically realistic models, and the burgeoning interface between phylogenetics and population genetics.



Quantitative Biology

Quantitative Biology Author Michael E. Wall
ISBN-10 9781439827222
Release 2012-08-25
Pages 392
Download Link Click Here

Quantitative methods are revolutionizing modern molecular and cellular biology. Groundbreaking technical advances are fueling the rapid expansion in our ability to observe, as seen in multidisciplinary studies that integrate theory, computation, experimental assays, and the control of microenvironments. Integrating new experimental and theoretical methods, Quantitative Biology: From Molecular to Cellular Systems gives both new and established researchers a solid foundation for starting work in this field. The book is organized into three sections: Fundamental Concepts covers bold ideas that inspire novel approaches in modern quantitative biology. It offers perspectives on evolutionary dynamics, system design principles, chance and memory, and information processing in biology. Methods describes recently developed or improved techniques that are transforming biological research. It covers experimental methods for studying single-molecule biochemistry, small-angle scattering from biomolecules, subcellular localization of proteins, and single-cell behavior. It also describes theoretical methods for synthetic biology and modeling random variations among cells. Molecular and Cellular Systems focuses on specific biological systems where modern quantitative biology methods are making an impact. It incorporates case studies of biological systems for which new concepts or methods are increasing our understanding. Examples include protein kinase at the molecular level, the genetic switch of phage lambda at the regulatory system level, and Escherichia coli chemotaxis at the cellular level. In short, Quantitative Biology presents practical tools for the observation, modeling, design, and manipulation of biological systems from the molecular to the cellular levels.



Genome Clustering

Genome Clustering Author Alexander Bolshoy
ISBN-10 9783642129520
Release 2010-06-07
Pages 206
Download Link Click Here

Knighting in sequence biology Edward N. Trifonov Genome classification, construction of phylogenetic trees, became today a major approach in studying evolutionary relatedness of various species in their vast - versity. Although the modern genome clustering delivers the trees which are very similar to those generated by classical means, and basic terminology is the same, the phenotypic traits and habitats are not anymore the playground for the classi- cation. The sequence space is the playground now. The phenotypic traits are - placed by sequence characteristics, “words”, in particular. Matter-of-factually, the phenotype and genotype merged, to confusion of both classical and modern p- logeneticists. Accordingly, a completely new vocabulary of stringology, information theory and applied mathematics took over. And a new brand of scientists emerged – those who do know the math and, simultaneously, (do?) know biology. The book is written by the authors of this new brand. There is no way to test their literacy in biology, as no biologist by training would even try to enter into the elite circle of those who masters their almost occult language. But the army of - formaticians, formal linguists, mathematicians humbly (or aggressively) longing to join modern biology, got an excellent introduction to the field of genome cl- tering, written by the team of their kin.



Statistical Methods for QTL Mapping

Statistical Methods for QTL Mapping Author Zehua Chen
ISBN-10 9781439868317
Release 2016-04-19
Pages 308
Download Link Click Here

While numerous advanced statistical approaches have recently been developed for quantitative trait loci (QTL) mapping, the methods are scattered throughout the literature. Statistical Methods for QTL Mapping brings together many recent statistical techniques that address the data complexity of QTL mapping. After introducing basic genetics topics and statistical principles, the author discusses the principles of quantitative genetics, general statistical issues of QTL mapping, commonly used one-dimensional QTL mapping approaches, and multiple interval mapping methods. He then explains how to use a feature selection approach to tackle a QTL mapping problem with dense markers. The book also provides comprehensive coverage of Bayesian models and MCMC algorithms and describes methods for multi-trait QTL mapping and eQTL mapping, including meta-trait methods and multivariate sequential procedures. This book emphasizes the modern statistical methodology for QTL mapping as well as the statistical issues that arise during this process. It gives the necessary biological background for statisticians without training in genetics and, likewise, covers statistical thinking and principles for geneticists. Written primarily for geneticists and statisticians specializing in QTL mapping, the book can also be used as a supplement in graduate courses or for self-study by PhD students working on QTL mapping projects.



Handbook of Statistical Systems Biology

Handbook of Statistical Systems Biology Author Michael Stumpf
ISBN-10 9781119952046
Release 2011-09-09
Pages 530
Download Link Click Here

Systems Biology is now entering a mature phase in which the key issues are characterising uncertainty and stochastic effects in mathematical models of biological systems. The area is moving towards a full statistical analysis and probabilistic reasoning over the inferences that can be made from mathematical models. This handbook presents a comprehensive guide to the discipline for practitioners and educators, in providing a full and detailed treatment of these important and emerging subjects. Leading experts in systems biology and statistics have come together to provide insight in to the major ideas in the field, and in particular methods of specifying and fitting models, and estimating the unknown parameters. This book: Provides a comprehensive account of inference techniques in systems biology. Introduces classical and Bayesian statistical methods for complex systems. Explores networks and graphical modeling as well as a wide range of statistical models for dynamical systems. Discusses various applications for statistical systems biology, such as gene regulation and signal transduction. Features statistical data analysis on numerous technologies, including metabolic and transcriptomic technologies. Presents an in-depth presentation of reverse engineering approaches. Provides colour illustrations to explain key concepts. This handbook will be a key resource for researchers practising systems biology, and those requiring a comprehensive overview of this important field.



Stochastic Processes

Stochastic Processes Author Pierre Del Moral
ISBN-10 9781498701846
Release 2017-02-24
Pages 916
Download Link Click Here

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.



Biological Data Mining

Biological Data Mining Author Jake Y. Chen
ISBN-10 1420086855
Release 2009-09-01
Pages 733
Download Link Click Here

Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplinary data mining researchers who cover state-of-the-art biological topics. The first section of the book discusses challenges and opportunities in analyzing and mining biological sequences and structures to gain insight into molecular functions. The second section addresses emerging computational challenges in interpreting high-throughput Omics data. The book then describes the relationships between data mining and related areas of computing, including knowledge representation, information retrieval, and data integration for structured and unstructured biological data. The last part explores emerging data mining opportunities for biomedical applications. This volume examines the concepts, problems, progress, and trends in developing and applying new data mining techniques to the rapidly growing field of genome biology. By studying the concepts and case studies presented, readers will gain significant insight and develop practical solutions for similar biological data mining projects in the future.