Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Statistics in Human Genetics and Molecular Biology

Statistics in Human Genetics and Molecular Biology Author Cavan Reilly
ISBN-10 1420072641
Release 2009-06-19
Pages 280
Download Link Click Here

Focusing on the roles of different segments of DNA, Statistics in Human Genetics and Molecular Biology provides a basic understanding of problems arising in the analysis of genetics and genomics. It presents statistical applications in genetic mapping, DNA/protein sequence alignment, and analyses of gene expression data from microarray experiments. The text introduces a diverse set of problems and a number of approaches that have been used to address these problems. It discusses basic molecular biology and likelihood-based statistics, along with physical mapping, markers, linkage analysis, parametric and nonparametric linkage, sequence alignment, and feature recognition. The text illustrates the use of methods that are widespread among researchers who analyze genomic data, such as hidden Markov models and the extreme value distribution. It also covers differential gene expression detection as well as classification and cluster analysis using gene expression data sets. Ideal for graduate students in statistics, biostatistics, computer science, and related fields in applied mathematics, this text presents various approaches to help students solve problems at the interface of these areas.



Introduction to Computational Biology

Introduction to Computational Biology Author Michael S. Waterman
ISBN-10 9781351437080
Release 2018-05-02
Pages 448
Download Link Click Here

Biology is in the midst of a era yielding many significant discoveries and promising many more. Unique to this era is the exponential growth in the size of information-packed databases. Inspired by a pressing need to analyze that data, Introduction to Computational Biology explores a new area of expertise that emerged from this fertile field- the combination of biological and information sciences. This introduction describes the mathematical structure of biological data, especially from sequences and chromosomes. After a brief survey of molecular biology, it studies restriction maps of DNA, rough landmark maps of the underlying sequences, and clones and clone maps. It examines problems associated with reading DNA sequences and comparing sequences to finding common patterns. The author then considers that statistics of pattern counts in sequences, RNA secondary structure, and the inference of evolutionary history of related sequences. Introduction to Computational Biology exposes the reader to the fascinating structure of biological data and explains how to treat related combinatorial and statistical problems. Written to describe mathematical formulation and development, this book helps set the stage for even more, truly interdisciplinary work in biology.



Statistical Modeling and Machine Learning for Molecular Biology

Statistical Modeling and Machine Learning for Molecular Biology Author Alan Moses
ISBN-10 9781482258608
Release 2017-01-06
Pages 280
Download Link Click Here

Molecular biologists are performing increasingly large and complicated experiments, but often have little background in data analysis. The book is devoted to teaching the statistical and computational techniques molecular biologists need to analyze their data. It explains the big-picture concepts in data analysis using a wide variety of real-world molecular biological examples such as eQTLs, ortholog identification, motif finding, inference of population structure, protein fold prediction and many more. The book takes a pragmatic approach, focusing on techniques that are based on elegant mathematics yet are the simplest to explain to scientists with little background in computers and statistics.



Computational Genome Analysis

Computational Genome Analysis Author Richard C. Deonier
ISBN-10 9780387288079
Release 2005-12-27
Pages 535
Download Link Click Here

This book presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book features a free download of the R software statistics package and the text provides great crossover material that is interesting and accessible to students in biology, mathematics, statistics and computer science. More than 100 illustrations and diagrams reinforce concepts and present key results from the primary literature. Exercises are given at the end of chapters.



Stochastic Modelling for Systems Biology Second Edition

Stochastic Modelling for Systems Biology  Second Edition Author Darren J. Wilkinson
ISBN-10 9781439837726
Release 2011-11-09
Pages 363
Download Link Click Here

Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.



The British National Bibliography

The British National Bibliography Author Arthur James Wells
ISBN-10 STANFORD:36105211722686
Release 2009
Pages
Download Link Click Here

The British National Bibliography has been writing in one form or another for most of life. You can find so many inspiration from The British National Bibliography also informative, and entertaining. Click DOWNLOAD or Read Online button to get full The British National Bibliography book for free.



Ordered Data Analysis Modeling and Health Research Methods

Ordered Data Analysis  Modeling and Health Research Methods Author Pankaj K. Choudhary
ISBN-10 9783319254333
Release 2015-12-14
Pages 265
Download Link Click Here

This volume presents an eclectic mix of original research articles in areas covering the analysis of ordered data, stochastic modeling and biostatistics. These areas were featured in a conference held at the University of Texas at Dallas from March 7 to 9, 2014 in honor of Professor H. N. Nagaraja’s 60th birthday and his distinguished contributions to statistics. The articles were written by leading experts who were invited to contribute to the volume from among the conference participants. The volume is intended for all researchers with an interest in order statistics, distribution theory, analysis of censored data, stochastic modeling, time series analysis, and statistical methods for the health sciences, including statistical genetics.



The BUGS Book

The BUGS Book Author David Lunn
ISBN-10 9781466586666
Release 2012-10-02
Pages 399
Download Link Click Here

Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions—all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book’s website.



Statistical Methods in Biology

Statistical Methods in Biology Author S.J. Welham
ISBN-10 9781439898055
Release 2014-08-22
Pages 608
Download Link Click Here

Written in simple language with relevant examples, Statistical Methods in Biology: Design and Analysis of Experiments and Regression is a practical and illustrative guide to the design of experiments and data analysis in the biological and agricultural sciences. The book presents statistical ideas in the context of biological and agricultural sciences to which they are being applied, drawing on relevant examples from the authors’ experience. Taking a practical and intuitive approach, the book only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat® statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R. By the time you reach the end of the book (and online material) you will have gained: A clear appreciation of the importance of a statistical approach to the design of your experiments, A sound understanding of the statistical methods used to analyse data obtained from designed experiments and of the regression approaches used to construct simple models to describe the observed response as a function of explanatory variables, Sufficient knowledge of how to use one or more statistical packages to analyse data using the approaches described, and most importantly, An appreciation of how to interpret the results of these statistical analyses in the context of the biological or agricultural science within which you are working. The book concludes with a guide to practical design and data analysis. It gives you the understanding to better interact with consultant statisticians and to identify statistical approaches to add value to your scientific research.



Handbook of Mixed Membership Models and Their Applications

Handbook of Mixed Membership Models and Their Applications Author Edoardo M. Airoldi
ISBN-10 9781466504097
Release 2014-11-06
Pages 618
Download Link Click Here

In response to scientific needs for more diverse and structured explanations of statistical data, researchers have discovered how to model individual data points as belonging to multiple groups. Handbook of Mixed Membership Models and Their Applications shows you how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology. Through examples using real data sets, you’ll discover how to characterize complex multivariate data in: Studies involving genetic databases Patterns in the progression of diseases and disabilities Combinations of topics covered by text documents Political ideology or electorate voting patterns Heterogeneous relationships in networks, and much more The handbook spans more than 20 years of the editors’ and contributors’ statistical work in the field. Top researchers compare partial and mixed membership models, explain how to interpret mixed membership, delve into factor analysis, and describe nonparametric mixed membership models. They also present extensions of the mixed membership model for text analysis, sequence and rank data, and network data as well as semi-supervised mixed membership models.



Quantitative Biology

Quantitative Biology Author Michael E. Wall
ISBN-10 9781439827222
Release 2012-08-25
Pages 392
Download Link Click Here

Quantitative methods are revolutionizing modern molecular and cellular biology. Groundbreaking technical advances are fueling the rapid expansion in our ability to observe, as seen in multidisciplinary studies that integrate theory, computation, experimental assays, and the control of microenvironments. Integrating new experimental and theoretical methods, Quantitative Biology: From Molecular to Cellular Systems gives both new and established researchers a solid foundation for starting work in this field. The book is organized into three sections: Fundamental Concepts covers bold ideas that inspire novel approaches in modern quantitative biology. It offers perspectives on evolutionary dynamics, system design principles, chance and memory, and information processing in biology. Methods describes recently developed or improved techniques that are transforming biological research. It covers experimental methods for studying single-molecule biochemistry, small-angle scattering from biomolecules, subcellular localization of proteins, and single-cell behavior. It also describes theoretical methods for synthetic biology and modeling random variations among cells. Molecular and Cellular Systems focuses on specific biological systems where modern quantitative biology methods are making an impact. It incorporates case studies of biological systems for which new concepts or methods are increasing our understanding. Examples include protein kinase at the molecular level, the genetic switch of phage lambda at the regulatory system level, and Escherichia coli chemotaxis at the cellular level. In short, Quantitative Biology presents practical tools for the observation, modeling, design, and manipulation of biological systems from the molecular to the cellular levels.



Bayesian Phylogenetics

Bayesian Phylogenetics Author Ming-Hui Chen
ISBN-10 9781466500792
Release 2014-05-27
Pages 396
Download Link Click Here

Offering a rich diversity of models, Bayesian phylogenetics allows evolutionary biologists, systematists, ecologists, and epidemiologists to obtain answers to very detailed phylogenetic questions. Suitable for graduate-level researchers in statistics and biology, Bayesian Phylogenetics: Methods, Algorithms, and Applications presents a snapshot of current trends in Bayesian phylogenetic research. Encouraging interdisciplinary research, this book introduces state-of-the-art phylogenetics to the Bayesian statistical community and, likewise, presents state-of-the-art Bayesian statistics to the phylogenetics community. The book emphasizes model selection, reflecting recent interest in accurately estimating marginal likelihoods. It also discusses new approaches to improve mixing in Bayesian phylogenetic analyses in which the tree topology varies. In addition, the book covers divergence time estimation, biologically realistic models, and the burgeoning interface between phylogenetics and population genetics.



Stochastic Processes

Stochastic Processes Author Pierre Del Moral
ISBN-10 9781498701846
Release 2017-02-24
Pages 916
Download Link Click Here

Unlike traditional books presenting stochastic processes in an academic way, this book includes concrete applications that students will find interesting such as gambling, finance, physics, signal processing, statistics, fractals, and biology. Written with an important illustrated guide in the beginning, it contains many illustrations, photos and pictures, along with several website links. Computational tools such as simulation and Monte Carlo methods are included as well as complete toolboxes for both traditional and new computational techniques.



Algebraic Statistics for Computational Biology

Algebraic Statistics for Computational Biology Author L. Pachter
ISBN-10 0521857007
Release 2005-08-22
Pages 420
Download Link Click Here

This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.



RNA seq Data Analysis

RNA seq Data Analysis Author Eija Korpelainen
ISBN-10 9781466595019
Release 2014-09-19
Pages 322
Download Link Click Here

The State of the Art in Transcriptome Analysis RNA sequencing (RNA-seq) data offers unprecedented information about the transcriptome, but harnessing this information with bioinformatics tools is typically a bottleneck. RNA-seq Data Analysis: A Practical Approach enables researchers to examine differential expression at gene, exon, and transcript levels and to discover novel genes, transcripts, and whole transcriptomes. Balanced Coverage of Theory and Practice Each chapter starts with theoretical background, followed by descriptions of relevant analysis tools and practical examples. Accessible to both bioinformaticians and nonprogramming wet lab scientists, the examples illustrate the use of command-line tools, R, and other open source tools, such as the graphical Chipster software. The Tools and Methods to Get Started in Your Lab Taking readers through the whole data analysis workflow, this self-contained guide provides a detailed overview of the main RNA-seq data analysis methods and explains how to use them in practice. It is suitable for researchers from a wide variety of backgrounds, including biology, medicine, genetics, and computer science. The book can also be used in a graduate or advanced undergraduate course.



Statistical Methods for QTL Mapping

Statistical Methods for QTL Mapping Author Zehua Chen
ISBN-10 9781439868317
Release 2016-04-19
Pages 308
Download Link Click Here

While numerous advanced statistical approaches have recently been developed for quantitative trait loci (QTL) mapping, the methods are scattered throughout the literature. Statistical Methods for QTL Mapping brings together many recent statistical techniques that address the data complexity of QTL mapping. After introducing basic genetics topics and statistical principles, the author discusses the principles of quantitative genetics, general statistical issues of QTL mapping, commonly used one-dimensional QTL mapping approaches, and multiple interval mapping methods. He then explains how to use a feature selection approach to tackle a QTL mapping problem with dense markers. The book also provides comprehensive coverage of Bayesian models and MCMC algorithms and describes methods for multi-trait QTL mapping and eQTL mapping, including meta-trait methods and multivariate sequential procedures. This book emphasizes the modern statistical methodology for QTL mapping as well as the statistical issues that arise during this process. It gives the necessary biological background for statisticians without training in genetics and, likewise, covers statistical thinking and principles for geneticists. Written primarily for geneticists and statisticians specializing in QTL mapping, the book can also be used as a supplement in graduate courses or for self-study by PhD students working on QTL mapping projects.



Introduction to Bio Ontologies

Introduction to Bio Ontologies Author Peter N. Robinson
ISBN-10 9781439836668
Release 2011-06-22
Pages 517
Download Link Click Here

Introduction to Bio-Ontologies explores the computational background of ontologies. Emphasizing computational and algorithmic issues surrounding bio-ontologies, this self-contained text helps readers understand ontological algorithms and their applications. The first part of the book defines ontology and bio-ontologies. It also explains the importance of mathematical logic for understanding concepts of inference in bio-ontologies, discusses the probability and statistics topics necessary for understanding ontology algorithms, and describes ontology languages, including OBO (the preeminent language for bio-ontologies), RDF, RDFS, and OWL. The second part covers significant bio-ontologies and their applications. The book presents the Gene Ontology; upper-level ontologies, such as the Basic Formal Ontology and the Relation Ontology; and current bio-ontologies, including several anatomy ontologies, Chemical Entities of Biological Interest, Sequence Ontology, Mammalian Phenotype Ontology, and Human Phenotype Ontology. The third part of the text introduces the major graph-based algorithms for bio-ontologies. The authors discuss how these algorithms are used in overrepresentation analysis, model-based procedures, semantic similarity analysis, and Bayesian networks for molecular biology and biomedical applications. With a focus on computational reasoning topics, the final part describes the ontology languages of the Semantic Web and their applications for inference. It covers the formal semantics of RDF and RDFS, OWL inference rules, a key inference algorithm, the SPARQL query language, and the state of the art for querying OWL ontologies. Web Resource Software and data designed to complement material in the text are available on the book’s website: http://bio-ontologies-book.org The site provides the R Robo package developed for the book, along with a compressed archive of data and ontology files used in some of the exercises. It also offers teaching/presentation slides and links to other relevant websites. This book provides readers with the foundation to use ontologies as a starting point for new bioinformatics research projects or to support current molecular genetics research projects. By supplying a self-contained introduction to OBO ontologies and the Semantic Web, it bridges the gap between both fields and helps readers see what each can contribute to the analysis and understanding of biomedical data.