Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Sustainable Energy Systems and Applications

Sustainable Energy Systems and Applications Author Ibrahim Dincer
ISBN-10 9780387958613
Release 2011-11-06
Pages 816
Download Link Click Here

The concept of sustainable development was first introduced by the Brundtland Commission almost 20 years ago and has received increased attention during the past decade. It is now an essential part of any energy activities. This is a research-based textbook which can be used by senior undergraduate students, graduate students, engineers, practitioners, scientists, researchers in the area of sustainable energy systems and aimed to address some key pillars: better efficiency, better cost effectiveness, better use of energy resources, better environment, better energy security, and better sustainable development. It also includes some cutting-edge topics, such hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools (exergy, constructal theory, etc.) for design, analysis and performance improvement.



Alternative Energy Systems and Applications

Alternative Energy Systems and Applications Author B. K. Hodge
ISBN-10 9781119109211
Release 2017-05-08
Pages 460
Download Link Click Here

The comprehensive guide to engineering alternative and renewable energy systems and applications—updated for the latest trends and technologies This book was designed tohelp engineers develop new solutions for the current energy economy. To that end it provides technical discussions, along with numerous real-world examples of virtually all existing alternative energy sources, applications, systems and system components. All chapters focus on first-order engineering calculations, and consider alternative uses of existing and renewable energy resources. Just as important, the author describes how to apply these concepts to the development of new energy solutions. Since the publication of the critically acclaimed first edition of this book, the alternative, renewable and sustainable energy industries have witnessed significant evolution and growth. Hydraulic fracturing, fossil fuel reserve increases, the increasing popularity of hybrid and all-electric vehicles, and the decreasing cost of solar power already have had a significant impact on energy usage patterns worldwide. Updated and revised to reflect those and other key developments, this new edition features expanded coverage of topics covered in the first edition, as well as entirely new chapters on hydraulic fracturing and fossil fuels, hybrid and all-electric vehicles, and more. Begins with a fascinating look at the changing face of global energy economy Features chapters devoted to virtually all sources of alternative energy and energy systems Offers technical discussions of hydropower, wind, passive solar and solar-thermal, photovoltaics, fuel cells, CHP systems, geothermal, ocean energy, biomass, and nuclear Contains updated chapter review questions, homework problems, and a thoroughly revised solutions manual, available on the companion website While Alternative Energy Systems and Applications, Second Edition is an ideal textbook/reference for advanced undergraduate and graduate level engineering courses in energy-related subjects, it is also an indispensable professional resource for engineers and technicians working in areas related to the development of alternative/renewable energy systems.



Refrigeration Systems and Applications

Refrigeration Systems and Applications Author Ibrahim Dincer
ISBN-10 9781119230786
Release 2017-03-23
Pages 752
Download Link Click Here

The definitive text/reference for students, researchers and practicing engineers This book provides comprehensive coverage on refrigeration systems and applications, ranging from the fundamental principles of thermodynamics to food cooling applications for a wide range of sectoral utilizations. Energy and exergy analyses as well as performance assessments through energy and exergy efficiencies and energetic and exergetic coefficients of performance are explored, and numerous analysis techniques, models, correlations and procedures are introduced with examples and case studies. There are specific sections allocated to environmental impact assessment and sustainable development studies. Also featured are discussions of important recent developments in the field, including those stemming from the author’s pioneering research. Refrigeration is a uniquely positioned multi-disciplinary field encompassing mechanical, chemical, industrial and food engineering, as well as chemistry. Its wide-ranging applications mean that the industry plays a key role in national and international economies. And it continues to be an area of active research, much of it focusing on making the technology as environmentally friendly and sustainable as possible without compromising cost efficiency and effectiveness. This substantially updated and revised edition of the classic text/reference now features two new chapters devoted to renewable-energy-based integrated refrigeration systems and environmental impact/sustainability assessment. All examples and chapter-end problems have been updated as have conversion factors and the thermophysical properties of an array of materials. Provides a solid foundation in the fundamental principles and the practical applications of refrigeration technologies Examines fundamental aspects of thermodynamics, refrigerants, as well as energy and exergy analyses and energy and exergy based performance assessment criteria and approaches Introduces environmental impact assessment methods and sustainability evaluation of refrigeration systems and applications Covers basic and advanced (and hence integrated) refrigeration cycles and systems, as well as a range of novel applications Discusses crucial industrial, technical and operational problems, as well as new performance improvement techniques and tools for better design and analysis Features clear explanations, numerous chapter-end problems and worked-out examples Refrigeration Systems and Applications, Third Edition is an indispensable working resource for researchers and practitioners in the areas of Refrigeration and Air Conditioning. It is also an ideal textbook for graduate and senior undergraduate students in mechanical, chemical, biochemical, industrial and food engineering disciplines.



Soft Computing in Green and Renewable Energy Systems

Soft Computing in Green and Renewable Energy Systems Author Kasthurirangan Gopalakrishnan
ISBN-10 9783642221750
Release 2011-08-20
Pages 306
Download Link Click Here

Soft Computing in Green and Renewable Energy Systems provides a practical introduction to the application of soft computing techniques and hybrid intelligent systems for designing, modeling, characterizing, optimizing, forecasting, and performance prediction of green and renewable energy systems. Research is proceeding at jet speed on renewable energy (energy derived from natural resources such as sunlight, wind, tides, rain, geothermal heat, biomass, hydrogen, etc.) as policy makers, researchers, economists, and world agencies have joined forces in finding alternative sustainable energy solutions to current critical environmental, economic, and social issues. The innovative models, environmentally benign processes, data analytics, etc. employed in renewable energy systems are computationally-intensive, non-linear and complex as well as involve a high degree of uncertainty. Soft computing technologies, such as fuzzy sets and systems, neural science and systems, evolutionary algorithms and genetic programming, and machine learning, are ideal in handling the noise, imprecision, and uncertainty in the data, and yet achieve robust, low-cost solutions. As a result, intelligent and soft computing paradigms are finding increasing applications in the study of renewable energy systems. Researchers, practitioners, undergraduate and graduate students engaged in the study of renewable energy systems will find this book very useful.



Assessment and Simulation Tools for Sustainable Energy Systems

Assessment and Simulation Tools for Sustainable Energy Systems Author Fausto Cavallaro
ISBN-10 9781447151432
Release 2013-08-13
Pages 427
Download Link Click Here

In recent years, the concept of energy has been revised and a new model based on the principle of sustainability has become more and more pervasive. The appraisal of energy technologies and projects is complex and uncertain as the related decision making has to encompass environmental, technical, economic and social factors and information sources. The scientific procedure of assessment has a vital role as it can supply the right tools to evaluate the actual situation and make realistic forecasts of the effects and outcomes of any actions undertaken. Assessment and Simulation Tools for Sustainable Energy Systems offers reviews of the main assessment and simulation methods used for effective energy assessment. Divided across three sections, Assessment and Simulation Tools for Sustainable Energy Systems develops the reader’s ability to select suitable tools to support decision making and implementation of sustainable energy projects. The first is dedicated to the analysis of theoretical foundations and applications of multi-criteria decision making. This is followed by chapters concentrating on the theory and practice of fuzzy inference, neural nets and algorithms genetics. Finally, simulation methods such as Monte Carlo analysis, mathematical programming and others are detailed. This comprehensive illustration of these tools and their application makes Assessment and Simulation Tools for Sustainable Energy Systems a key guide for researchers, scientists, managers, politicians and industry professionals developing the field of sustainable energy systems. It may also prompt further advancements in soft computing and simulation issues for students and researchers.



Biomass as Energy Source

Biomass as Energy Source Author Erik Dahlquist
ISBN-10 9780203120255
Release 2013-03-25
Pages 300
Download Link Click Here

Global energy use is approximately 140 000 TWh per year. Interestingly, biomass production amounts to approximately 270 000 TWh per year, or roughly twice as much, whereas the official figure of biomass use for energy applications is 10-13% of the global energy use. This shows that biomass is not a marginal energy resource but more than capable of meeting all our energy and food needs, provided it is used efficiently. The use of food in generating energy has been extensively debated, but there is actually no need for it given the comprehensive resources available from agriculture and forestry waste. This book discusses the biomass resources available and aspects like efficient energy use. One way of using energy efficiently is to use waste biomass or cellulosic materials in biorefineries, where production of fibers and products from fibers is combined with production of most chemicals we need in our daily life. Such products include clothes, soap, perfume, medicines etc. Conventional pulp and paper applications, bio-fuel for vehicles and even fuel for aviation as well as heat and power production are covered. The problem with biomass is not availability, but the difficulty to use the resources efficiently without harming the long-term productivity. This book covers all types of resources on a global scale, making it unique. Many researchers from all over the world have contributed to give a good coverage of all the different international perspectives. This book will provide facts and inspiration to professionals, engineers, researchers, and students as well as to those working for various authorities and organizations.



Progress in Clean Energy Volume 2

Progress in Clean Energy  Volume 2 Author Ibrahim Dincer
ISBN-10 9783319170312
Release 2015-10-28
Pages 1184
Download Link Click Here

This expansive reference provides readers with the broadest available single-volume coverage of leading-edge advances in the development and optimization of clean energy technologies. From innovative biofuel feed stocks and processing techniques, to novel solar materials with record-breaking efficiencies, remote-sensing for offshore wind turbines to breakthroughs in high performance PEM fuel cell electrode manufacturing, phase change materials in green buildings to bio sorption of pharmaceutical pollutants, the myriad exciting developments in green technology described in this book will provide inspiration and information to researchers, engineers and students working in sustainability around the world.



Power Electronics for Renewable Energy Systems Transportation and Industrial Applications

Power Electronics for Renewable Energy Systems  Transportation and Industrial Applications Author Haitham Abu-Rub
ISBN-10 9781118755501
Release 2014-06-02
Pages 832
Download Link Click Here

Compiles current research into the analysis and design of power electronic converters for industrial applications and renewable energy systems, presenting modern and future applications of power electronics systems in the field of electrical vehicles With emphasis on the importance and long-term viability of Power Electronics for Renewable Energy this book brings together the state of the art knowledge and cutting-edge techniques in various stages of research. The topics included are not currently available for practicing professionals and aim to enable the reader to directly apply the knowledge gained to their designs. The book addresses the practical issues of current and future electric and plug-in hybrid electric vehicles (PHEVs), and focuses primarily on power electronics and motor drives based solutions for electric vehicle (EV) technologies. Propulsion system requirements and motor sizing for EVs is discussed, along with practical system sizing examples. Key EV battery technologies are explained as well as corresponding battery management issues. PHEV power system architectures and advanced power electronics intensive charging infrastructures for EVs and PHEVs are detailed. EV/PHEV interface with renewable energy is described, with practical examples. This book explores new topics for further research needed world-wide, and defines existing challenges, concerns, and selected problems that comply with international trends, standards, and programs for electric power conversion, distribution, and sustainable energy development. It will lead to the advancement of the current state-of-the art applications of power electronics for renewable energy, transportation, and industrial applications and will help add experience in the various industries and academia about the energy conversion technology and distributed energy sources. Combines state of the art global expertise to present the latest research on power electronics and its application in transportation, renewable energy and different industrial applications Offers an overview of existing technology and future trends, with discussion and analysis of different types of converters and control techniques (power converters, high performance power devices, power system, high performance control system and novel applications) Systematic explanation to provide researchers with enough background and understanding to go deeper in the topics covered in the book



Sustainable Energy Technologies

Sustainable Energy Technologies Author Eduardo Rincón-Mejía
ISBN-10 9781351980678
Release 2017-11-20
Pages 399
Download Link Click Here

This book examines the key aspects that will define future sustainable energy systems: energy supply, energy storage, security and limited environmental impacts. It clearly explains the need for an integrated engineering approach to sustainable energies, based on mathematical, biogeophysical, and engineering arguments. Resilient and efficient alternatives are compared to non-sustainable options. This book results from the collaboration of 50 international contributors.



Applications of Solar Energy

Applications of Solar Energy Author Himanshu Tyagi
ISBN-10 9789811072062
Release 2017-11-29
Pages 364
Download Link Click Here

This book focuses on solar-energy-based renewable energy systems and discusses the generation of electric power using solar photovoltaics, as well as some new techniques, such as solar towers, for both residential and commercial needs. Such systems have played an important role in the move towards low-emission and sustainable energy sources. The book covers a variety of applications, such as solar water heaters, solar air heaters, solar drying, nanoparticle-based direct absorption solar systems, solar volumetric receivers, solar-based cooling systems, solar-based food processing and cooking, efficient buildings using solar energy, and energy storage for solar thermal systems. Given its breadth of coverage, the book offers a valuable resource for researchers, students, and professionals alike.



Designing Sustainable Energy for All

Designing Sustainable Energy for All Author Carlo Vezzoli
ISBN-10 9783319702230
Release 2018-05-17
Pages 208
Download Link Click Here

This open access book addresses the issue of diffusing sustainable energy access in low- and middle-income contexts. Access to energy is one of the greatest challenges for many people living in low- income and developing contexts, as around 1.4 billion people lack access to electricity. Distributed Renewable Energy systems (DRE) are considered a promising approach to address this challenge and provide energy access to all. However, even if promising, the implementation of DRE systems is not always straightforward. The book analyses, discusses and classifies the promising Sustainable Product-Service System (S.PSS) business models to deliver Distributed Renewable Energy systems in an effective, efficient and sustainable way. Its message is supported with cases studies and examples, discussing the economic, environmental and socioethical benefits as well as its limitations and barriers to its implementation. An innovative design approach is proposed and a set of design tools are supplied, enabling readers to create and develop Sustainable Product-Service System (S.PSS) solutions to deliver Distributed Renewable Energy systems. Practical applications of the book’s design approach and tools by companies and practitioners are discussed and the book will be of interest to readers in design, industry, govermanetal institution, NGOs as well as researchers.



Exergy

Exergy Author Ibrahim Dincer
ISBN-10 9780080970905
Release 2012-12-31
Pages 576
Download Link Click Here

This book deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments Connects exergy with three essential areas in terms of energy, environment and sustainable development Provides a number of illustrative examples, practical applications, and case studies Written in an easy-to-follow style, starting from the basics to advanced systems



Principles of Sustainable Energy

Principles of Sustainable Energy Author Frank Kreith
ISBN-10 9781439814079
Release 2010-12-16
Pages 895
Download Link Click Here

A transition from a fossil fuel–based economy to one that uses renewable energy has become inevitable; this transition will not only be an engineering challenge, but will also be an economic and environmental one. Offering an interdisciplinary, quantitative approach, Principles of Sustainable Energy presents a comprehensive overview of the major renewable energy technologies currently available, including biomass and biofuels, solar thermal conversion, photovoltaics, and wind energy conversion. Written by renowned expert Frank Kreith, the book emphasizes economics as well as energy return on investment analyses for each technology and integrates the need for energy conservation with the overall aspects of building a sustainable energy system with renewable sources. The author covers energy storage in depth, because it is considered one of the most important, and problematic, requirements for building a sustainable renewable energy system. Treatments of the economics of nuclear power and options for transportation systems are also included. The book contains worked-out example problems illustrating engineering analyses from a systems perspective and problem sets to reinforce concepts and applications. Examples and exercises relating to solar energy systems cover latitudes in the Northern and Southern Hemispheres and use current worldwide solar radiation data. But this text is not merely academic: its clearheaded look at the energy picture from the ground up, and the environmental, economic, and sustainability benefits that renewable energy systems can provide, make it a resource for government and industry as well as a text for engineering students.



Optimization of Energy Systems

Optimization of Energy Systems Author Ibrahim Dincer
ISBN-10 9781118894491
Release 2017-05-03
Pages 472
Download Link Click Here

An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications. Examples, practical applications and case studies to put theory into practice. Study problems at the end of each chapter that foster critical thinking and skill development. Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.



Supercapacitors

Supercapacitors Author Francois Beguin
ISBN-10 9783527646685
Release 2013-04-02
Pages 568
Download Link Click Here

Supercapacitors are a relatively new energy storage system that provides higher energy density than dielectric capacitors and higher power density than batteries. They are particularly suited to applications that require energy pulses during short periods of time, e.g., seconds or tens of seconds. They are recommended for automobiles, tramways, buses, cranes, fork-lifts, wind turbines, electricity load leveling in stationary and transportation systems, etc. Despite the technological maturity of supercapacitors, there is a lack of comprehensive literature on the topic. Many high performance materials have been developed and new scientific concepts have been introduced. Taking into account the commercial interest in these systems and the new scientific and technological developments now is the ideal time to publish this book, capturing all this new knowledge. The book starts by giving an introduction to the general principles of electrochemistry, the properties of electrochemical capacitors, and electrochemical characterization techniques. Electrical double layer capacitors and pseudocapacitors are then discussed, followed by the various electrolyte systems. Modelling, manufacture of industrial capacitors, constraints, testing, and reliability as well as applications are also covered. 'Supercapacitors - Materials, Systems, and Applications' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.



Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies

Life Cycle Assessment of Energy Systems and Sustainable Energy Technologies Author Riccardo Basosi
ISBN-10 3319937391
Release 2019-01-11
Pages
Download Link Click Here

This book deals with the application of life cycle assessment (LCA) methodology to sustainable energy systems and technologies. It reviews the state-of-the-art of the Italian experiences on the LCA applied to energy, and the most recent results from research in this field, with a particular focus on renewables, bio-energy and sustainable solutions. The contributors describe in detail the applications of LCA to various energy system topics, including: • electricity production, smart energy grids and energy storage systems;• renewable energy production from biomass;• production of biodiesel from microalgae;• environmental impacts of biomass power plants; and• geothermal energy production. These topics are supported by critical reviews and case studies, with discussions of Italian examples, demonstrating LCA’s application to various energy systems. A particular focus is placed on bio-energies and bio-energy systems, demonstrating how LCA can be used for optimal bio-energy production. This book offers an opportunity for researchers and advanced practitioners in the field of LCA to learn more about the application of LCA methodology to energy systems and technologies. It will also be of interest to students, as it enables them to understand the environmental impacts of energy systems and sustainable energy technologies, through the analysis of their life cycles.



Thermal Energy Storage

Thermal Energy Storage Author Ibrahim Dincer
ISBN-10 9781119956624
Release 2011-06-24
Pages 620
Download Link Click Here

The ability of thermal energy storage (TES) systems to facilitate energy savings, renewable energy use and reduce environmental impact has led to a recent resurgence in their interest. The second edition of this book offers up-to-date coverage of recent energy efficient and sustainable technological methods and solutions, covering analysis, design and performance improvement as well as life-cycle costing and assessment. As well as having significantly revised the book for use as a graduate text, the authors address real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and practical applications of thermal energy storage technology. Beginning with a general summary of thermodynamics, fluid mechanics and heat transfer, this book goes on to discuss practical applications with chapters that include TES systems, environmental impact, energy savings, energy and exergy analyses, numerical modeling and simulation, case studies and new techniques and performance assessment methods.