Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

The Mathematical Structure of Classical and Relativistic Physics

The Mathematical Structure of Classical and Relativistic Physics Author Enzo Tonti
ISBN-10 9781461474227
Release 2013-09-07
Pages 514
Download Link Click Here

The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics. The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories. Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.



Mathematical Reviews

Mathematical Reviews Author
ISBN-10 UVA:X006180727
Release 2004
Pages
Download Link Click Here

Mathematical Reviews has been writing in one form or another for most of life. You can find so many inspiration from Mathematical Reviews also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Mathematical Reviews book for free.



Computational Multiscale Modeling of Fluids and Solids

Computational Multiscale Modeling of Fluids and Solids Author Martin Oliver Steinhauser
ISBN-10 9783540751168
Release 2008
Pages 427
Download Link Click Here

The idea of the book is to provide a comprehensive overview of computational physics methods and techniques, that are used for materials modeling on different length and time scales. Each chapter first provides an overview of the physical basic principles which are the basis for the numerical and mathematical modeling on the respective length-scale. The book includes the micro-scale, the meso-scale and the macro-scale. The chapters follow this classification. The book will explain in detail many tricks of the trade of some of the most important methods and techniques that are used to simulate materials on the perspective levels of spatial and temporal resolution. Case studies are occasionally included to further illustrate some methods or theoretical considerations. Example applications for all techniques are provided, some of which are from the author’s own contributions to some of the research areas. Methods are explained, if possible, on the basis of the original publications but also references to standard text books established in the various fields are mentioned.



American Book Publishing Record

American Book Publishing Record Author
ISBN-10 UOM:39015066043178
Release 2004
Pages
Download Link Click Here

American Book Publishing Record has been writing in one form or another for most of life. You can find so many inspiration from American Book Publishing Record also informative, and entertaining. Click DOWNLOAD or Read Online button to get full American Book Publishing Record book for free.



Modeling and Simulation for Automatic Control

Modeling and Simulation for Automatic Control Author Olav Egeland
ISBN-10 8292356010
Release 2002
Pages 639
Download Link Click Here

Modeling and Simulation for Automatic Control has been writing in one form or another for most of life. You can find so many inspiration from Modeling and Simulation for Automatic Control also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Modeling and Simulation for Automatic Control book for free.



Modeling Materials

Modeling Materials Author Ellad B. Tadmor
ISBN-10 9781139500654
Release 2011-11-24
Pages
Download Link Click Here

Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.



Modeling and Simulation Fundamentals

Modeling and Simulation Fundamentals Author John A. Sokolowski
ISBN-10 0470590610
Release 2010-07-13
Pages 456
Download Link Click Here

An insightful presentation of the key concepts, paradigms, and applications of modeling and simulation Modeling and simulation has become an integral part of research and development across many fields of study, having evolved from a tool to a discipline in less than two decades. Modeling and Simulation Fundamentals offers a comprehensive and authoritative treatment of the topic and includes definitions, paradigms, and applications to equip readers with the skills needed to work successfully as developers and users of modeling and simulation. Featuring contributions written by leading experts in the field, the book's fluid presentation builds from topic to topic and provides the foundation and theoretical underpinnings of modeling and simulation. First, an introduction to the topic is presented, including related terminology, examples of model development, and various domains of modeling and simulation. Subsequent chapters develop the necessary mathematical background needed to understand modeling and simulation topics, model types, and the importance of visualization. In addition, Monte Carlo simulation, continuous simulation, and discrete event simulation are thoroughly discussed, all of which are significant to a complete understanding of modeling and simulation. The book also features chapters that outline sophisticated methodologies, verification and validation, and the importance of interoperability. A related FTP site features color representations of the book's numerous figures. Modeling and Simulation Fundamentals encompasses a comprehensive study of the discipline and is an excellent book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of computational statistics, engineering, and computer science who use statistical modeling techniques.



Term Structure Models

Term Structure Models Author Damir Filipovic
ISBN-10 9783540680154
Release 2009-07-28
Pages 256
Download Link Click Here

Changing interest rates constitute one of the major risk sources for banks, insurance companies, and other financial institutions. Modeling the term-structure movements of interest rates is a challenging task. This volume gives an introduction to the mathematics of term-structure models in continuous time. It includes practical aspects for fixed-income markets such as day-count conventions, duration of coupon-paying bonds and yield curve construction; arbitrage theory; short-rate models; the Heath-Jarrow-Morton methodology; consistent term-structure parametrizations; affine diffusion processes and option pricing with Fourier transform; LIBOR market models; and credit risk. The focus is on a mathematically straightforward but rigorous development of the theory. Students, researchers and practitioners will find this volume very useful. Each chapter ends with a set of exercises, that provides source for homework and exam questions. Readers are expected to be familiar with elementary Itô calculus, basic probability theory, and real and complex analysis.



Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields

Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields Author Jie Liu
ISBN-10 9783642405495
Release 2013-09-30
Pages 84
Download Link Click Here

The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.



Mathematical Modeling and Simulation

Mathematical Modeling and Simulation Author Kai Velten
ISBN-10 9783527627615
Release 2009-06-01
Pages 362
Download Link Click Here

This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra - all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently discussed in detail. Based on the author`s modeling and simulation experience in science and engineering and as a consultant, the book answers such basic questions as: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? The book relies exclusively upon open-source software which is available to everybody free of charge. The entire book software - including 3D CFD and structural mechanics simulation software - can be used based on a free CAELinux-Live-DVD that is available in the Internet (works on most machines and operating systems).



Topological Methods in the Study of Boundary Value Problems

Topological Methods in the Study of Boundary Value Problems Author Pablo Amster
ISBN-10 9781461488934
Release 2013-10-23
Pages 226
Download Link Click Here

This textbook is devoted to the study of some simple but representative nonlinear boundary value problems by topological methods. The approach is elementary, with only a few model ordinary differential equations and applications, chosen in such a way that the student may avoid most of the technical difficulties and focus on the application of topological methods. Only basic knowledge of general analysis is needed, making the book understandable to non-specialists. The main topics in the study of boundary value problems are present in this text, so readers with some experience in functional analysis or differential equations may also find some elements that complement and enrich their tools for solving nonlinear problems. In comparison with other texts in the field, this one has the advantage of a concise and informal style, thus allowing graduate and undergraduate students to enjoy some of the beauties of this interesting branch of mathematics. Exercises and examples are included throughout the book, providing motivation for the reader.



A Topological Introduction to Nonlinear Analysis

A Topological Introduction to Nonlinear Analysis Author Robert F. Brown
ISBN-10 9783319117942
Release 2014-11-27
Pages 240
Download Link Click Here

This third edition is addressed to the mathematician or graduate student of mathematics - or even the well-prepared undergraduate - who would like, with a minimum of background and preparation, to understand some of the beautiful results at the heart of nonlinear analysis. Based on carefully-expounded ideas from several branches of topology, and illustrated by a wealth of figures that attest to the geometric nature of the exposition, the book will be of immense help in providing its readers with an understanding of the mathematics of the nonlinear phenomena that characterize our real world. Included in this new edition are several new chapters that present the fixed point index and its applications. The exposition and mathematical content is improved throughout. This book is ideal for self-study for mathematicians and students interested in such areas of geometric and algebraic topology, functional analysis, differential equations, and applied mathematics. It is a sharply focused and highly readable view of nonlinear analysis by a practicing topologist who has seen a clear path to understanding. "For the topology-minded reader, the book indeed has a lot to offer: written in a very personal, eloquent and instructive style it makes one of the highlights of nonlinear analysis accessible to a wide audience."-Monatshefte fur Mathematik (2006)



New Scientist

New Scientist Author
ISBN-10
Release 1988-03-03
Pages 104
Download Link Click Here

New Scientist magazine was launched in 1956 "for all those men and women who are interested in scientific discovery, and in its industrial, commercial and social consequences". The brand's mission is no different today - for its consumers, New Scientist reports, explores and interprets the results of human endeavour set in the context of society and culture.



A Course in Mathematical Physics

A Course in Mathematical Physics Author Walter Thirring
ISBN-10 9783709175262
Release 2013-03-09
Pages 290
Download Link Click Here

In this final volume I have tried to present the subject of statistical mechanics in accordance with the basic principles of the series. The effort again entailed following Gustav Mahler's maxim, "Tradition = Schlamperei" (i.e., filth) and clearing away a large portion of this tradition-laden area. The result is a book with little in common with most other books on the subject. The ordinary perturbation-theoretic calculations are not very useful in this field. Those methods have never led to propositions of much substance. Even when perturbation series, which for the most part never converge, can be given some asymptotic meaning, it cannot be determined how close the nth order approximation comes to the exact result. Since analytic solutions of nontrivial problems are beyond human capabilities, for better or worse we must settle for sharp bounds on the quantities of interest, and can at most strive to make the degree of accuracy satisfactory.



A Survey of Computational Physics

A Survey of Computational Physics Author Rubin H. Landau
ISBN-10 9781400841189
Release 2011-10-30
Pages 688
Download Link Click Here

Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics. By treating science, applied mathematics, and computer science together, the book reveals how this knowledge base can be applied to a wider range of real-world problems than computational physics texts normally address. Designed for a one- or two-semester course, A Survey of Computational Physics will also interest anyone who wants a reference on or practical experience in the basics of computational physics. Accessible to advanced undergraduates Real-world problem-solving approach Java codes and applets integrated with text Companion Web site includes videos of lectures



Modern Physics for Engineers

Modern Physics for Engineers Author Jasprit Singh
ISBN-10 9783527617692
Release 2008-11-20
Pages 400
Download Link Click Here

Linking physics fundamentals to modern technology-a highly applied primer for students and engineers Reminding us that modern inventions-new materials, information technologies, medical technological breakthroughs-are based on well-established fundamental principles of physics, Jasprit Singh integrates important topics from quantum mechanics, statistical thermodynamics, and materials science, as well as the special theory of relativity. He then goes a step farther and applies these fundamentals to the workings of electronic devices-an essential leap for anyone interested in developing new technologies. From semiconductors to nuclear magnetic resonance to superconducting materials to global positioning systems, Professor Singh draws on wide-ranging applications to demonstrate each concept under discussion. He downplays extended mathematical derivations in favor of results and their real-world design implication, supplementing the book with nearly 100 solved examples, 120 figures, and 200 end-of-chapter problems. Modern Physics for Engineers provides engineering and physics students with an accessible, unified introduction to the complex world underlying today's design-oriented curriculums. It is also an extremely useful resource for engineers and applied scientists wishing to take advantage of research opportunities in diverse fields.



Superlinear Parabolic Problems

Superlinear Parabolic Problems Author Pavol Quittner
ISBN-10 3764384417
Release 2007-08-16
Pages 584
Download Link Click Here

This book is devoted to the qualitative study of solutions of superlinear elliptic and parabolic partial differential equations and systems. This class of problems contains, in particular, a number of reaction-diffusion systems which arise in various mathematical models, especially in chemistry, physics and biology. The book is self-contained and up-to-date, taking special care on the didactical preparation of the material. It is devoted to problems that are intensively studied but have not been treated thus far in depth in the book literature.