Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

The Mathematics of Soap Films

The Mathematics of Soap Films Author John Oprea
ISBN-10 9780821821183
Release 2000
Pages 266
Download Link Click Here

Nature tries to minimize the surface area of a soap film through the action of surface tension. The process can be understood mathematically by using differential geometry, complex analysis, and the calculus of variations. This book employs ingredients from each of these subjects to tell the mathematical story of soap films. The text is fully self-contained, bringing together a mixture of types of mathematics along with a bit of the physics that underlies the subject. The development is primarily from first principles, requiring no advanced background material from either mathematics or physics. Through the MapleR applications, the reader is given tools for creating the shapes that are being studied. Thus, you can ``see'' a fluid rising up an inclined plane, create minimal surfaces from complex variables data, and investigate the ``true'' shape of a balloon. Oprea also includes descriptions of experiments and photographs that let you see real soap films on wire frames. The theory of minimal surfaces is a beautiful subject, which naturally introduces the reader to fascinating, yet accessible, topics in mathematics. Oprea's presentation is rich with examples, explanations, and applications. It would make an excellent text for a senior seminar or for independent study by upper-division mathematics or science majors.



Demonstrating Science with Soap Films

Demonstrating Science with Soap Films Author Lovett
ISBN-10 9781351456197
Release 2017-11-22
Pages 216
Download Link Click Here

Many of us have been fascinated as children by soap bubbles and soap films. Their shapes and colours are beautiful and they are great fun to pay with. With no les intensity, scientists and mathematicians have been interested in the properties of bubbles and films throughout scientific history. In this book David Lovett describes the properties of soap films and soap bubbles. He then uses their properties to illustrate and elucidate a wide range of physical principles and scientific phenomena in a way that unifies different concepts. The book will appeal not only to students and teachers at school and university but also to readers with a general scientific interest and to researchers studying soap films. For the most part simple school mathematics is used. Sections containing more advanced mathematics have been placed in boxes or appendices and can be omitted by readers without the appropriate mathematical background. The text is supported with * Over 100 diagrams and photgraphs. * Details of practical experiments that can be performed using simple household materials. * Computer programs that draw some of the more complicated figures or animate sequences of soap film configurations. * A bibliography for readers wishing to delve further into the subject. David Lovett is a lecturer in physics at the University of Essex. His research interests include Langmiur-Blodgett thin films and the use of models as teaching aids in physics. He has been interested in soap films since 1978 and has made a number of original contributions to the subject, particularly in the use of models which change their dimensions and their analogy with phase transitions. He has published three other books including ITensor Properties of Crystals (Institute of Physics Publishing 1989). John Tilley is also a lecturer in physics at the University of Essex with research interests in theoretical solid-state physics and soap films. He is coauthor of Superfluidity and Superc



The Science of Soap Films and Soap Bubbles

The Science of Soap Films and Soap Bubbles Author Cyril Isenberg
ISBN-10 0486269604
Release 1978
Pages 188
Download Link Click Here

Superb treatment of molecular and macroscopic properties of soap films and bubbles, emphasizing solutions of physical problems. Over 120 black-and-white illustrations, 41 color photographs.



Touching Soap Films

Touching Soap Films Author Andreas Arnez
ISBN-10 3540240934
Release 2007
Pages 16
Download Link Click Here

This video introduces the world of soap films via the story of a young boy exploring the palace of soap films. Under the guidance of an old professor, he witnesses never-before-seen shapes and animations of soap films, and gains fascinating insights.



Soap Films and Bubbles

Soap Films and Bubbles Author Ann Wiebe
ISBN-10 PSU:000043942565
Release 1990-01-01
Pages 220
Download Link Click Here

Soap Films and Bubbles has been writing in one form or another for most of life. You can find so many inspiration from Soap Films and Bubbles also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Soap Films and Bubbles book for free.



Visualizing Mathematics with 3D Printing

Visualizing Mathematics with 3D Printing Author Henry Segerman
ISBN-10 9781421420363
Release 2016-07-26
Pages 200
Download Link Click Here

Wouldn’t it be great to experience three-dimensional ideas in three dimensions? In this book—the first of its kind—mathematician and mathematical artist Henry Segerman takes readers on a fascinating tour of two-, three-, and four-dimensional mathematics, exploring Euclidean and non-Euclidean geometries, symmetry, knots, tilings, and soap films. Visualizing Mathematics with 3D Printing includes more than 100 color photographs of 3D printed models. Readers can take the book’s insights to a new level by visiting its sister website, 3dprintmath.com, which features virtual three-dimensional versions of the models for readers to explore. These models can also be ordered online or downloaded to print on a 3D printer. Combining the strengths of book and website, this volume pulls higher geometry and topology out of the realm of the abstract and puts it into the hands of anyone fascinated by mathematical relationships of shape. With the book in one hand and a 3D printed model in the other, readers can find deeper meaning while holding a hyperbolic honeycomb, touching the twists of a torus knot, or caressing the curves of a Klein quartic. -- Carlo H. Séquin



Explorations in Complex Analysis

Explorations in Complex Analysis Author Michael A. Brilleslyper
ISBN-10 9780883857786
Release 2012-01-01
Pages 373
Download Link Click Here

This book is written for mathematics students who have encountered basic complex analysis and want to explore more advanced project and/or research topics. It could be used as (a) a supplement for a standard undergraduate complex analysis course, allowing students in groups or as individuals to explore advanced topics, (b) a project resource for a senior capstone course for mathematics majors, (c) a guide for an advanced student or a small group of students to independently choose and explore an undergraduate research topic, or (d) a portal for the mathematically curious, a hands-on introduction to the beauties of complex analysis. Research topics in the book include complex dynamics, minimal surfaces, fluid flows, harmonic, conformal, and polygonal mappings, and discrete complex analysis via circle packing. The nature of this book is different from many mathematics texts: the focus is on student-driven and technology-enhanced investigation. Interlaced in the reading for each chapter are examples, exercises, explorations, and projects, nearly all linked explicitly with computer applets for visualization and hands-on manipulation. There are more than 15 Java applets that allow students to explore the research topics without the need for purchasing additional software.



Differential Geometry and Its Applications

Differential Geometry and Its Applications Author John Oprea
ISBN-10 0883857480
Release 2007-09-06
Pages 469
Download Link Click Here

Differential geometry has a long, wonderful history it has found relevance in areas ranging from machinery design of the classification of four-manifolds to the creation of theories of nature's fundamental forces to the study of DNA. This book studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole, it mixes geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. Differential geometry is not just for mathematics majors, it is also for students in engineering and the sciences. Into the mix of these ideas comes the opportunity to visualize concepts through the use of computer algebra systems such as Maple. The book emphasizes that this visualization goes hand-in-hand with the understanding of the mathematics behind the computer construction. Students will not only “see” geodesics on surfaces, but they will also see the effect that an abstract result such as the Clairaut relation can have on geodesics. Furthermore, the book shows how the equations of motion of particles constrained to surfaces are actually types of geodesics. Students will also see how particles move under constraints. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract.



The Science of Soap Films and Soap Bubbles

The Science of Soap Films and Soap Bubbles Author Cyril Isenberg
ISBN-10 0486269604
Release 1978
Pages 188
Download Link Click Here

Superb treatment of molecular and macroscopic properties of soap films and bubbles, emphasizing solutions of physical problems. Over 120 black-and-white illustrations, 41 color photographs.



Soap films bounded by non closed curves

Soap films bounded by non closed curves Author Stanford University. Dept. of Mathematics
ISBN-10 STANFORD:36105009662300
Release 1994
Pages 80
Download Link Click Here

Soap films bounded by non closed curves has been writing in one form or another for most of life. You can find so many inspiration from Soap films bounded by non closed curves also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Soap films bounded by non closed curves book for free.



Minimal Surfaces and Functions of Bounded Variation

Minimal Surfaces and Functions of Bounded Variation Author Giusti
ISBN-10 9781468494860
Release 2013-03-14
Pages 240
Download Link Click Here

The problem of finding minimal surfaces, i. e. of finding the surface of least area among those bounded by a given curve, was one of the first considered after the foundation of the calculus of variations, and is one which received a satis factory solution only in recent years. Called the problem of Plateau, after the blind physicist who did beautiful experiments with soap films and bubbles, it has resisted the efforts of many mathematicians for more than a century. It was only in the thirties that a solution was given to the problem of Plateau in 3-dimensional Euclidean space, with the papers of Douglas [DJ] and Rado [R T1, 2]. The methods of Douglas and Rado were developed and extended in 3-dimensions by several authors, but none of the results was shown to hold even for minimal hypersurfaces in higher dimension, let alone surfaces of higher dimension and codimension. It was not until thirty years later that the problem of Plateau was successfully attacked in its full generality, by several authors using measure-theoretic methods; in particular see De Giorgi [DG1, 2, 4, 5], Reifenberg [RE], Federer and Fleming [FF] and Almgren [AF1, 2]. Federer and Fleming defined a k-dimensional surface in IR" as a k-current, i. e. a continuous linear functional on k-forms. Their method is treated in full detail in the splendid book of Federer [FH 1].



The Mathematical Mechanic

The Mathematical Mechanic Author Mark Levi
ISBN-10 9780691154565
Release 2012
Pages 186
Download Link Click Here

In this delightful book, Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can.



Random Walk and the Heat Equation

Random Walk and the Heat Equation Author Gregory F. Lawler
ISBN-10 9780821848296
Release 2010-11-22
Pages 156
Download Link Click Here

The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.



Minimal Surfaces Stratified Multivarifolds and the Plateau Problem

Minimal Surfaces  Stratified Multivarifolds  and the Plateau Problem Author A. T. Fomenko
ISBN-10 0821898272
Release 1991-02-21
Pages
Download Link Click Here

Plateau's problem is a scientific trend in modern mathematics that unites several different problems connected with the study of minimal surfaces. In its simplest version, Plateau's problem is concerned with finding a surface of least area that spans a given fixed one-dimensional contour in three-dimensional space--perhaps the best-known example of such surfaces is provided by soap films. From the mathematical point of view, such films are described as solutions of a second-order partial differential equation, so their behavior is quite complicated and has still not been thoroughly studied. Soap films, or, more generally, interfaces between physical media in equilibrium, arise in many applied problems in chemistry, physics, and also in nature. In applications, one finds not only two-dimensional but also multidimensional minimal surfaces that span fixed closed ``contours'' in some multidimensional Riemannian space. An exact mathematical statement of the problem of finding a surface of least area or volume requires the formulation of definitions of such fundamental concepts as a surface, its boundary, minimality of a surface, and so on. It turns out that there are several natural definitions of these concepts, which permit the study of minimal surfaces by different, and complementary, methods. In the framework of this comparatively small book it would be almost impossible to cover all aspects of the modern problem of Plateau, to which a vast literature has been devoted. However, this book makes a unique contribution to this literature, for the authors' guiding principle was to present the material with a maximum of clarity and a minimum of formalization. Chapter 1 contains historical background on Plateau's problem, referring to the period preceding the 1930s, and a description of its connections with the natural sciences. This part is intended for a very wide circle of readers and is accessible, for example, to first-year graduate students. The next part of the book, comprising Chapters 2-5, gives a fairly complete survey of various modern trends in Plateau's problem. This section is accessible to second- and third-year students specializing in physics and mathematics. The remaining chapters present a detailed exposition of one of these trends (the homotopic version of Plateau's problem in terms of stratified multivarifolds) and the Plateau problem in homogeneous symplectic spaces. This last part is intended for specialists interested in the modern theory of minimal surfaces and can be used for special courses; a command of the concepts of functional analysis is assumed.



A Course in Minimal Surfaces

A Course in Minimal Surfaces Author Tobias H. Colding
ISBN-10 9780821853238
Release 2011
Pages 313
Download Link Click Here

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.



Plateau s Problem

Plateau s Problem Author Frederick J. Almgren
ISBN-10 9780821827475
Release 1966
Pages 78
Download Link Click Here

There have been many wonderful developments in the theory of minimal surfaces and geometric measure theory in the past 25 to 30 years. Many of the researchers who have produced these excellent results were inspired by this little book--or by Fred Almgren himself. The book is indeed a delightful invitation to the world of variational geometry. A central topic is Plateau's Problem, which is concerned with surfaces that model the behavior of soap films. When trying to resolve the problem, however, one soon finds that smooth surfaces are insufficient: Varifolds are needed. With varifolds, one can obtain geometrically meaningful solutions without having to know in advance all their possible singularities. This new tool makes possible much exciting new analysis and many new results. Plateau's problem and varifolds live in the world of geometric measure theory, where differential geometry and measure theory combine to solve problems which have variational aspects. The author's hope in writing this book was to encourage young mathematicians to study this fascinating subject further. Judging from the success of his students, it achieves this exceedingly well.



Shapes

Shapes Author Philip Ball
ISBN-10 9780199604869
Release 2011-05-26
Pages 312
Download Link Click Here

"Nature's patterns is a trilogy composed of Shapes, Flow, and Branches."