Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

 The Numerical Solution of Ordinary and Partial Differential Equations is an introduction to the numerical solution of ordinary and partial differential equations. Finite difference methods for solving partial differential equations are mostly classical low order formulas, easy to program but not ideal for problems with poorly behaved solutions or (especially) for problems in irregular multidimensional regions. FORTRAN77 programs are used to implement many of the methods studied. Comprised of six chapters, this book begins with a review of direct methods for the solution of linear systems, with emphasis on the special features of the linear systems that arise when differential equations are solved. The next four chapters deal with the more commonly used finite difference methods for solving a variety of problems, including both ordinary differential equations and partial differential equations, and both initial value and boundary value problems. The final chapter is an overview of the basic ideas behind the finite element method and covers the Galerkin method for boundary value problems. Examples using piecewise linear trial functions, cubic hermite trial functions, and triangular elements are presented. This monograph is appropriate for senior-level undergraduate or first-year graduate students of mathematics.

 The Numerical Solution of Ordinary and Partial Differential Equations has been writing in one form or another for most of life. You can find so many inspiration from The Numerical Solution of Ordinary and Partial Differential Equations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full The Numerical Solution of Ordinary and Partial Differential Equations book for free.

 A concise introduction to numerical methodsand the mathematical framework neededto understand their performance Numerical Solution of Ordinary Differential Equations presents a complete and easy-to-follow introduction to classical topics in the numerical solution of ordinary differential equations. The book's approach not only explains the presented mathematics, but also helps readers understand how these numerical methods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringing together and categorizing different types of problems in order to help readers comprehend the applications of ordinary differential equations. In addition, the authors' collective academic experience ensures a coherent and accessible discussion of key topics, including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to test and build their knowledge of the presented methods, and a related Web site features MATLAB® programs that facilitate the exploration of numerical methods in greater depth. Detailed references outline additional literature on both analytical and numerical aspects of ordinary differential equations for further exploration of individual topics. Numerical Solution of Ordinary Differential Equations is an excellent textbook for courses on the numerical solution of differential equations at the upper-undergraduate and beginning graduate levels. It also serves as a valuable reference for researchers in the fields of mathematics and engineering.

 Numerical Solution of Ordinary and Partial Differential Equations is based on a summer school held in Oxford in August-September 1961. The book is organized into four parts. The first three cover the numerical solution of ordinary differential equations, integral equations, and partial differential equations of quasi-linear form. Most of the techniques are evaluated from the standpoints of accuracy, convergence, and stability (in the various senses of these terms) as well as ease of coding and convenience of machine computation. The last part, on practical problems, uses and develops the techniques for the treatment of problems of the greatest difficulty and complexity, which tax not only the best machines but also the best brains. This book was written for scientists who have problems to solve, and who want to know what methods exist, why and in what circumstances some are better than others, and how to adapt and develop techniques for new problems. The budding numerical analyst should also benefit from this book, and should find some topics for valuable research. The first three parts, in fact, could be used not only by practical men but also by students, though a preliminary elementary course would assist the reading.

 An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.

 Numerical Solution of Ordinary Differential Equations has been writing in one form or another for most of life. You can find so many inspiration from Numerical Solution of Ordinary Differential Equations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Numerical Solution of Ordinary Differential Equations book for free.

 Substantially revised, this authoritative study covers the standard finite difference methods of parabolic, hyperbolic, and elliptic equations, and includes the concomitant theoretical work on consistency, stability, and convergence. The new edition includes revised and greatly expanded sections on stability based on the Lax-Richtmeyer definition, the application of Pade approximants to systems of ordinary differential equations for parabolic and hyperbolic equations, and a considerably improved presentation of iterative methods. A fast-paced introduction to numerical methods, this will be a useful volume for students of mathematics and engineering, and for postgraduates and professionals who need a clear, concise grounding in this discipline.

 Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numerical solution ofordinary differential equations, numerical solution of partial differential equations, and so on. These are needed because our numerical education and software have improved and because our relevant problems exhibit more variety and more difficulty. Ordinary differential equa tions are obvious candidates for such treatment, and the current book is written in this sense.

 With emphasis on modern techniques, Numerical Methods for Differential Equations: A Computational Approach covers the development and application of methods for the numerical solution of ordinary differential equations. Some of the methods are extended to cover partial differential equations. All techniques covered in the text are on a program disk included with the book, and are written in Fortran 90. These programs are ideal for students, researchers, and practitioners because they allow for straightforward application of the numerical methods described in the text. The code is easily modified to solve new systems of equations. Numerical Methods for Differential Equations: A Computational Approach also contains a reliable and inexpensive global error code for those interested in global error estimation. This is a valuable text for students, who will find the derivations of the numerical methods extremely helpful and the programs themselves easy to use. It is also an excellent reference and source of software for researchers and practitioners who need computer solutions to differential equations.

 Numerical solution of ordinary and partial differential equations based on a Summer School held in Oxford August September 1961 has been writing in one form or another for most of life. You can find so many inspiration from Numerical solution of ordinary and partial differential equations based on a Summer School held in Oxford August September 1961 also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Numerical solution of ordinary and partial differential equations based on a Summer School held in Oxford August September 1961 book for free.

 From the reviews of Numerical Solution of Partial Differential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, even exhaustive, survey of the subject . . . [It] is unique in that it covers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic) mode of presentation. Many different computational schemes are described in great detail . . . Numerous practical examples and applications are described from beginning to the end, often with calculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages to lucid developments of the methods [for solving partial differential equations] . . . the writing is very polished and I found it a pleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen and Eli L. Isaacson. A modern, practical look at numerical analysis, this book guides readers through a broad selection of numerical methods, implementation, and basic theoretical results, with an emphasis on methods used in scientific computation involving differential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan. Presenting an easily accessible treatment of mathematical methods for scientists and engineers, this acclaimed work covers fluid mechanics and calculus of variations as well as more modern methods-dimensional analysis and scaling, nonlinear wave propagation, bifurcation, and singular perturbation. 1996 (0-471-16513-1) 496 pp.

 Numerical Solution of Ordinary and Partial Differential Equations has been writing in one form or another for most of life. You can find so many inspiration from Numerical Solution of Ordinary and Partial Differential Equations also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Numerical Solution of Ordinary and Partial Differential Equations book for free.

 The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.