Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

The theory of Fourier series and integrals

The theory of Fourier series and integrals Author Philip L. Walker
ISBN-10 0471901121
Release 1986
Pages 192
Download Link Click Here

A concise treatment of Fourier series and integrals, with particular emphasis on their relation and importance to science and engineering. Illustrates interesting applications which those with limited mathematical knowledge can execute. Key concepts are supported by examples and exercises at the end of each chapter. Includes background on elementary analysis, a comprehensive bibliography, and a guide to further reading for readers who want to pursue the subject in greater depth.



Fourier Series and Integrals

Fourier Series and Integrals Author Harry Dym
ISBN-10 0122264517
Release 1985-10
Pages 295
Download Link Click Here

The ideas of Fourier have made their way into every branch of mathematics and mathematical physics, from the theory of numbers to quantum mechanics. Fourier Series and Integrals focuses on the extraordinary power and flexibility of Fourier's basic series and integrals and on the astonishing variety of applications in which it is the chief tool. It presents a mathematical account of Fourier ideas on the circle and the line, on finite commutative groups, and on a few important noncommutative groups. A wide variety of exercises are placed in nearly every section as an integral part of the text.



Introduction to the Theory of Fourier s Series and Integrals

Introduction to the Theory of Fourier s Series and Integrals Author Horatio Scott Carslaw
ISBN-10 UCAL:$B100287
Release 1921
Pages 323
Download Link Click Here

Introduction to the Theory of Fourier s Series and Integrals has been writing in one form or another for most of life. You can find so many inspiration from Introduction to the Theory of Fourier s Series and Integrals also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Introduction to the Theory of Fourier s Series and Integrals book for free.



An Introduction to Lebesgue Integration and Fourier Series

An Introduction to Lebesgue Integration and Fourier Series Author Howard J. Wilcox
ISBN-10 9780486137476
Release 2012-04-30
Pages 159
Download Link Click Here

Undergraduate-level introduction to Riemann integral, measurable sets, measurable functions, Lebesgue integral, other topics. Numerous examples and exercises.



An Introduction to Fourier Series and Integrals

An Introduction to Fourier Series and Integrals Author Robert T. Seeley
ISBN-10 9780486151793
Release 2014-02-20
Pages 112
Download Link Click Here

DIVThis compact guide emphasizes the relationship between physics and mathematics, introducing Fourier series in the way that Fourier himself used them: as solutions of the heat equation in a disk. 1966 edition. /div



Introduction to the theory of Fourier s series and integrals

Introduction to the theory of Fourier s series and integrals Author Horatio Scott Carslaw
ISBN-10 UCAL:B4128717
Release 1930
Pages 368
Download Link Click Here

Introduction to the theory of Fourier s series and integrals has been writing in one form or another for most of life. You can find so many inspiration from Introduction to the theory of Fourier s series and integrals also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Introduction to the theory of Fourier s series and integrals book for free.



The Fourier Integral and Certain of Its Applications

The Fourier Integral and Certain of Its Applications Author Norbert Wiener
ISBN-10 0521358841
Release 1988-11-17
Pages 201
Download Link Click Here

The book was written from lectures given at the University of Cambridge and maintains throughout a high level of rigour whilst remaining a highly readable and lucid account. Topics covered include the Planchard theory of the existence of Fourier transforms of a function of L2 and Tauberian theorems. The influence of G. H. Hardy is apparent from the presence of an application of the theory to the prime number theorems of Hadamard and de la Vallee Poussin. Both pure and applied mathematicians will welcome the reissue of this classic work. For this reissue, Professor Kahane's Foreword briefly describes the genesis of Wiener's work and its later significance to harmonic analysis and Brownian motion.



Introduction to the Theory of Fourier s Series and Integrals and the Mathematical Theory of the Conduction of Heat

Introduction to the Theory of Fourier s Series and Integrals and the Mathematical Theory of the Conduction of Heat Author Horatio Scott Carslaw
ISBN-10 PRNC:32101007590902
Release 1906
Pages 434
Download Link Click Here

Introduction to the Theory of Fourier s Series and Integrals and the Mathematical Theory of the Conduction of Heat has been writing in one form or another for most of life. You can find so many inspiration from Introduction to the Theory of Fourier s Series and Integrals and the Mathematical Theory of the Conduction of Heat also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Introduction to the Theory of Fourier s Series and Integrals and the Mathematical Theory of the Conduction of Heat book for free.



Fourier Series

Fourier Series Author Georgi? Pavlovich Tolstov
ISBN-10 0486633179
Release 1976-06
Pages 336
Download Link Click Here

Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series. This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourier Series and the Fourier Integral, Bessel Functions and Fourier-Bessel Series, and the Eigenfunction Method and its Applications to Mathematical Physics. Every chapter moves clearly from topic to topic and theorem to theorem, with many theorem proofs given. A total of 107 problems will be found at the ends of the chapters, including many specially added to this English-language edition, and answers are given at the end of the text. Richard Silverman's excellent translation makes this book readily accessible to mathematicians and math students, as well as workers and students in the fields of physics and engineering. He has also added a bibliography, containing suggestions for collateral and supplementary reading. 1962 edition.



Analysis II

Analysis II Author Roger Godement
ISBN-10 9783540299264
Release 2006-09-11
Pages 448
Download Link Click Here

Functions in R and C, including the theory of Fourier series, Fourier integrals and part of that of holomorphic functions, form the focal topic of these two volumes. Based on a course given by the author to large audiences at Paris VII University for many years, the exposition proceeds somewhat nonlinearly, blending rigorous mathematics skilfully with didactical and historical considerations. It sets out to illustrate the variety of possible approaches to the main results, in order to initiate the reader to methods, the underlying reasoning, and fundamental ideas. It is suitable for both teaching and self-study. In his familiar, personal style, the author emphasizes ideas over calculations and, avoiding the condensed style frequently found in textbooks, explains these ideas without parsimony of words. The French edition in four volumes, published from 1998, has met with resounding success: the first two volumes are now available in English.



An Introduction of the Theory of Fourier s Series and Integrals

An Introduction of the Theory of Fourier s Series and Integrals Author
ISBN-10 OCLC:901176485
Release 1950
Pages 368
Download Link Click Here

An Introduction of the Theory of Fourier s Series and Integrals has been writing in one form or another for most of life. You can find so many inspiration from An Introduction of the Theory of Fourier s Series and Integrals also informative, and entertaining. Click DOWNLOAD or Read Online button to get full An Introduction of the Theory of Fourier s Series and Integrals book for free.



An Introduction to Fourier Analysis and Generalised Functions

An Introduction to Fourier Analysis and Generalised Functions Author M. J. Lighthill
ISBN-10 0521091284
Release 1958
Pages 79
Download Link Click Here

"Clearly and attractively written, but without any deviation from rigorous standards of mathematical proof...." Science Progress



Fourier Analysis and Its Applications

Fourier Analysis and Its Applications Author G. B. Folland
ISBN-10 0821847902
Release 1992
Pages 433
Download Link Click Here

This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.



Fourier and Laplace Transforms

Fourier and Laplace Transforms Author R. J. Beerends
ISBN-10 0521534410
Release 2003-08-07
Pages 447
Download Link Click Here

This textbook presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations. The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. This textbook is designed for self-study. It includes many worked examples, together with more than 120 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.



Fourier Series and Integral Transforms

Fourier Series and Integral Transforms Author Allan Pinkus
ISBN-10 0521597714
Release 1997-07-10
Pages 189
Download Link Click Here

Textbook covering the basics of Fourier series, Fourier transforms and Laplace transforms.



Fourier Analysis in Probability Theory

Fourier Analysis in Probability Theory Author Tatsuo Kawata
ISBN-10 9781483218526
Release 2014-06-17
Pages 680
Download Link Click Here

Fourier Analysis in Probability Theory provides useful results from the theories of Fourier series, Fourier transforms, Laplace transforms, and other related studies. This 14-chapter work highlights the clarification of the interactions and analogies among these theories. Chapters 1 to 8 present the elements of classical Fourier analysis, in the context of their applications to probability theory. Chapters 9 to 14 are devoted to basic results from the theory of characteristic functions of probability distributors, the convergence of distribution functions in terms of characteristic functions, and series of independent random variables. This book will be of value to mathematicians, engineers, teachers, and students.



A Panorama of Harmonic Analysis

A Panorama of Harmonic Analysis Author Steven Krantz
ISBN-10 0883850311
Release 1999-09-02
Pages 357
Download Link Click Here

Tracing a path from the earliest beginnings of Fourier series through to the latest research A Panorama of Harmonic Analysis discusses Fourier series of one and several variables, the Fourier transform, spherical harmonics, fractional integrals, and singular integrals on Euclidean space. The climax is a consideration of ideas from the point of view of spaces of homogeneous type, which culminates in a discussion of wavelets. This book is intended for graduate students and advanced undergraduates, and mathematicians of whatever background who want a clear and concise overview of the subject of commutative harmonic analysis.