Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Theory and Phenomena of Metamaterials

Theory and Phenomena of Metamaterials Author Filippo Capolino
ISBN-10 9781351835268
Release 2017-12-21
Pages 974
Download Link Click Here

Theory and Phenomena of Metamaterials offers an in-depth look at the theoretical background and basic properties of electromagnetic artificial materials, often called metamaterials. A volume in the Metamaterials Handbook, this book provides a comprehensive guide to working with metamaterials using topics presented in a concise review format along with numerous references. With contributions from leading researchers, this text covers all areas where artificial materials have been developed. Each chapter in the text features a concluding summary as well as various cross references to address a wide range of disciplines in a single volume.



Applications of Metamaterials

Applications of Metamaterials Author Filippo Capolino
ISBN-10 9781351835275
Release 2017-12-21
Pages 762
Download Link Click Here

This book uses the first volume’s exploration of theory, basic properties, and modeling topics to develop readers’ understanding of applications and devices that are based on artificial materials. It explores a wide range of applications in fields including electronics, telecommunications, sensing, medical instrumentation, and data storage. The text also includes a practical user’s guide and explores key areas in which artificial materials have developed. It includes experts’ perspectives on current and future applications of metamaterials, to present a well-rounded view on state-of-the-art technologies.



Tunable Microwave Metamaterial Structures

Tunable Microwave Metamaterial Structures Author Matthias Maasch
ISBN-10 9783319281797
Release 2016-01-23
Pages 138
Download Link Click Here

This book presents original findings on tunable microwave metamaterial structures, and describes the theoretical and practical issues involved in the design of metamaterial devices. Special emphasis is given to tunable elements and their advantages in terms of feeding network simplification. Different biasing schemes and feeding network topologies are presented, together with extensive prototype measurements and simulations. The book describes a novel, unique solution for beam steering and beam forming applications, and thus paves the way for the diffusion of new agile communication system components. At the same time, it provides readers with an outstanding and timely review of wave propagation in periodic structures, tunability of metamaterials and the technological constraints that need to be considered in the design of reconfigurable microwave components.



Transformation Electromagnetics and Metamaterials

Transformation Electromagnetics and Metamaterials Author Douglas H. Werner
ISBN-10 9781447149965
Release 2013-07-19
Pages 499
Download Link Click Here

Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.



Metamaterials Handbook Two Volume Slipcase Set

Metamaterials Handbook   Two Volume Slipcase Set Author Filippo Capolino
ISBN-10 1420053620
Release 2009-10-27
Pages 1736
Download Link Click Here

The study of artificial electromagnetic materials, or metamaterials, breaks down the traditional frontiers to combine disciplines such as physics and microfabrication, electromagnetic theory and computational methods, optics and microwaves, and nanotechnology and nanochemistry. With their unique physical properties and unusual combination of microscopic and nanoscopic structures, metamaterials have application potential in a wide range of fields, from electronics and telecommunications to sensing, medical instrumentation, and data storage. However, the strategic objectives of metamaterial development require close cooperation between the many subareas of the field and cross-fertilization of the research from each. A superior reference for these multidisciplinary challenges, the Metamaterials Handbook provides the multifaceted understanding required by those researching this broad and exciting field. Featuring contributions from international experts, this book covers the essential aspects of metamaterials, including modeling and design, proven and potential applications in practical devices, fabrication, characterization, and measurement. With detailed references for each topic, it conveniently organizes a wealth of information into two volumes—Theory and Phenomena and Applications—that cover years worth of extensive research in this exciting area. Summarizing the state of the art in the field of electromagnetic artificial materials, this handbook is an ideal guide to using metamaterials for electronic devices in the entire frequency spectrum, from megahertz to optical frequencies.



Metamaterials

Metamaterials Author Nader Engheta
ISBN-10 9780471784180
Release 2006-06-23
Pages 352
Download Link Click Here

Leading experts explore the exotic properties and exciting applications of electromagnetic metamaterials Metamaterials: Physics and Engineering Explorations gives readers a clearly written, richly illustrated introduction to the most recent research developments in the area of electromagnetic metamaterials. It explores the fundamental physics, the designs, and the engineering aspects, and points to a myriad of exciting potential applications. The editors, acknowledged leaders in the field of metamaterials, have invited a group of leading researchers to present both their own findings and the full array of state-of-the-art applications for antennas, waveguides, devices, and components. Following a brief overview of the history of artificial materials, the publication divides its coverage into two major classes of metamaterials. The first half of the publication examines effective media with single (SNG) and double negative (DNG) properties; the second half examines electromagnetic band gap (EBG) structures. The book further divides each of these classes into their three-dimensional (3D volumetric) and two-dimensional (2D planar or surface) realizations. Examples of each type of metamaterial are presented, and their known and anticipated properties are reviewed. Collectively, Metamaterials: Physics and Engineering Explorations presents a review of recent research advances associated with a highly diverse set of electromagnetic metamaterials. Its multifaceted approach offers readers a combination of theoretical, numerical, and experimental perspectives for a better understanding of their behaviors and their potentialapplications in components, devices, and systems. Extensive reference lists provide opportunities to explore individual topics and classes of metamaterials in greater depth. With full-color illustrations throughout to clarify concepts and help visualize actual results, this book provides a dynamic, user-friendly resource for students, engineers, physicists, and other researchers in the areas of electromagnetic materials, microwaves, millimeter waves, and optics. It equips newcomers with a basic understanding of metamaterials and their potential applications. Advanced researchers will benefit from thought-provoking perspectives that will deepen their knowledge and lead them to new areas of investigation.



An Introduction to Metamaterials and Waves in Composites

An Introduction to Metamaterials and Waves in Composites Author Biswajit Banerjee
ISBN-10 9781439841570
Release 2011-06-07
Pages 375
Download Link Click Here

Requiring no advanced knowledge of wave propagation, An Introduction to Metamaterials and Waves in Composites focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. The book gives novices a platform from which they can start exploring the subject in more detail. After introducing concepts related to elasticity, acoustics, and electrodynamics in media, the text presents plane wave solutions to the equations that describe elastic, acoustic, and electromagnetic waves. It examines the plane wave expansion of sources as well as scattering from curved interfaces, specifically spheres and cylinders. The author then covers electrodynamic, acoustic, and elastodynamic metamaterials. He also describes examples of transformations, aspects of acoustic cloaking, and applications of pentamode materials to acoustic cloaking. With a focus on periodic composites, the text uses the Bloch-Floquet theorem to find the effective behavior of composites in the quasistatic limit, presents the quasistatic equations of elastodynamic and electromagnetic waves, and investigates Brillouin zones and band gaps in periodic structures. The final chapter discusses wave propagation in smoothly varying layered media, anisotropic density of a periodic layered medium, and quasistatic homogenization of laminates. This book provides a launch pad for research into elastic and acoustic metamaterials. Many of the ideas presented have yet to be realized experimentally—the book encourages readers to explore these ideas and bring them to technological maturity.



Negative Refraction Metamaterials

Negative Refraction Metamaterials Author G. V. Eleftheriades
ISBN-10 9780471744740
Release 2005-08-08
Pages 316
Download Link Click Here

Learn about the revolutionary new technology of negative-refraction metamaterials Negative-Refraction Metamaterials: Fundamental Principles and Applications introduces artificial materials that support the unusual electromagnetic property of negative refraction. Readers will discover several classes of negative-refraction materials along with their exciting, groundbreaking applications, such as lenses and antennas, imaging with super-resolution, microwave devices, dispersion-compensating interconnects, radar, and defense. The book begins with a chapter describing the fundamentals of isotropic metamaterials in which a negative index of refraction is defined. In the following chapters, the text builds on the fundamentals by describing a range of useful microwave devices and antennas. Next, a broad spectrum of exciting new research and emerging applications is examined, including: * Theory and experiments behind a super-resolving, negative-refractive-index transmission-line lens * 3-D transmission-line metamaterials with a negative refractive index * Numerical simulation studies of negative refraction of Gaussian beams and associated focusing phenomena * Unique advantages and theory of shaped lenses made of negative-refractive-index metamaterials * A new type of transmission-line metamaterial that is anisotropic and supports the formation of sharp steerable beams (resonance cones) * Implementations of negative-refraction metamaterials at optical frequencies * Unusual propagation phenomena in metallic waveguides partially filled with negative-refractive-index metamaterials * Metamaterials in which the refractive index and the underlying group velocity are both negative This work brings together the best minds in this cutting-edge field. It is fascinating reading for scientists, engineers, and graduate-level students in physics, chemistry, materials science, photonics, and electrical engineering.



Selected Topics in Photonic Crystals and Metamaterials

Selected Topics in Photonic Crystals and Metamaterials Author Antonello Andreone
ISBN-10 9789814355186
Release 2011
Pages 532
Download Link Click Here

The interest towards photonic crystals and metamaterials and their strategic importance are evident in the steadily growing rate of topical publications. This title addresses that ranges topics, including aspects pertaining to modeling, phenomenologies, experiments, technologies and applications.



Hyperbolic Metamaterials

Hyperbolic Metamaterials Author Igor I Smolyaninov
ISBN-10 9781681745664
Release 2018-03-23
Pages 81
Download Link Click Here

Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogs. Here I review typical material systems, which exhibit hyperbolic behavior and outline important new applications of hyperbolic metamaterials, such as imaging experiments with plasmonic hyperbolic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. I will also discuss potential applications of self-assembled photonic hypercrystals. This system bypasses 3D nanofabrication issues, which typically limit hyperbolic metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.



Electrodynamics of Metamaterials

Electrodynamics of Metamaterials Author Andrey K. Sarychev
ISBN-10 9789810242459
Release 2007
Pages 247
Download Link Click Here

Local electromagnetic field fluctuations and related enhancement of nonlinear phenomena in metal-dielectric composites near the percolation threshold (percolation composites) have recently become an area of active study, because of the many fundamental problems involved and the high potential for various applications. It has been recognized recently that local field fluctuations can be especially large in the optical and infrared spectral ranges due to the surface plasmon resonance in metallic granules and their clusters. The strong fluctuations of the local electric and magnetic fields result in the enhancement of various optical effects: anomalous absorption, Rayleigh and Raman scattering, generation of the higher harmonic, Kerr nonlinearity, etc. Nonlinear percolation composites are potentially of great practical importance as media with intensity-dependent dielectric functions and, in particular, as nonlinear filters and optical bistable elements. The optical response of nonlinear composites can be tuned, for example, by controlling the volume fraction and morphology of constituents. This book presents a new theory of electromagnetic field distribution and nonlinear optical processes in metal-dielectric composites. The new approach is based on a percolation theory and the fact that the problem of optical excitations in percolation composites mathematically maps the Anderson transition problem in quantum mechanics. The theory predicts localization of the excitations (surface plasmons) in percolation composites and describes in detail the localization pattern that allows one to obtain relatively simple expressions for the enhancement of linear and nonlinear optical responses. Thistheory is supported by recent near-field experiments where the surface plasmon localization has been directly observed in the percolating composites in optical and microwave bands.



World Scientific Handbook of Metamaterials Properties

World Scientific Handbook of Metamaterials Properties Author Stefan A. Maier
ISBN-10 9813227656
Release 2017
Pages 480
Download Link Click Here

Volume 1: Fundamentals of electromagnetic metamaterials / edited by: E. Shamonina (Oxford) -- volume 2: Elastic, acoustic, and seismic metamaterials / edited by: R. Craster (Imperial College London, UK), S. Guenneau (Institut Fresnel, France & Aix-Marseille Université, France) -- volume 3: Active nanoplasmonics and metamaterials / edited by: O. Hess (Imperial College London, UK) -- volume 4: Recent progress in the field of nanoplasmonics / edited by: J. Aizpurua (Spanish Council for Scientific Research (CSIC), Spain)



Plasmonics Fundamentals and Applications

Plasmonics  Fundamentals and Applications Author Stefan Alexander Maier
ISBN-10 0387378251
Release 2007-05-16
Pages 224
Download Link Click Here

Considered a major field of photonics, plasmonics offers the potential to confine and guide light below the diffraction limit and promises a new generation of highly miniaturized photonic devices. This book combines a comprehensive introduction with an extensive overview of the current state of the art. Coverage includes plasmon waveguides, cavities for field-enhancement, nonlinear processes and the emerging field of active plasmonics studying interactions of surface plasmons with active media.



Broadband Metamaterials in Electromagnetics

Broadband Metamaterials in Electromagnetics Author Douglas H. Werner
ISBN-10 9781315340760
Release 2017-07-06
Pages 382
Download Link Click Here

The rapid development of technology based on metamaterials coupled with the recent introduction of the transformation optics technique provides an unprecedented ability for device designers to manipulate and control the behavior of electromagnetic wave phenomena. Many of the early metamaterial designs, such as negative index materials and electromagnetic bandgap surfaces, were limited to operation only over a very narrow bandwidth. However, recent groundbreaking work reported by several international research groups on the development of broadband metamaterials has opened up the doors to an exciting frontier in the creation of new devices for applications ranging from radio frequencies to visible wavelengths. This book contains a collection of eight chapters that cover recent cutting-edge contributions to the theoretical, numerical, and experimental aspects of broadband metamaterials.



Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields Author Jian-Ming Jin
ISBN-10 9781119108092
Release 2015-08-26
Pages 744
Download Link Click Here

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.



Optical Metamaterials

Optical Metamaterials Author Wenshan Cai
ISBN-10 1441911510
Release 2009-12-01
Pages 200
Download Link Click Here

Metamaterials—artificially structured materials with engineered electromagnetic properties—have enabled unprecedented flexibility in manipulating electromagnetic waves and producing new functionalities. This book details recent advances in the study of optical metamaterials, ranging from fundamental aspects to up-to-date implementations, in one unified treatment. Important recent developments and applications such as superlens and cloaking devices are also treated in detail and made understandable. The planned monograph can serve as a very timely book for both newcomers and advanced researchers in this extremely rapid evolving field.



Handbook of Single Molecule Biophysics

Handbook of Single Molecule Biophysics Author Peter Hinterdorfer
ISBN-10 0387764976
Release 2009-12-24
Pages 626
Download Link Click Here

This handbook describes experimental techniques to monitor and manipulate individual biomolecules, including fluorescence detection, atomic force microscopy, and optical and magnetic trapping. It includes single-molecule studies of physical properties of biomolecules such as folding, polymer physics of protein and DNA, enzymology and biochemistry, single molecules in the membrane, and single-molecule techniques in living cells.