Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Understanding Computational Bayesian Statistics

Understanding Computational Bayesian Statistics Author William M. Bolstad
ISBN-10 9781118209929
Release 2011-09-20
Pages 336
Download Link Click Here

A hands-on introduction to computational statistics from a Bayesian point of view Providing a solid grounding in statistics while uniquely covering the topics from a Bayesian perspective, Understanding Computational Bayesian Statistics successfully guides readers through this new, cutting-edge approach. With its hands-on treatment of the topic, the book shows how samples can be drawn from the posterior distribution when the formula giving its shape is all that is known, and how Bayesian inferences can be based on these samples from the posterior. These ideas are illustrated on common statistical models, including the multiple linear regression model, the hierarchical mean model, the logistic regression model, and the proportional hazards model. The book begins with an outline of the similarities and differences between Bayesian and the likelihood approaches to statistics. Subsequent chapters present key techniques for using computer software to draw Monte Carlo samples from the incompletely known posterior distribution and performing the Bayesian inference calculated from these samples. Topics of coverage include: Direct ways to draw a random sample from the posterior by reshaping a random sample drawn from an easily sampled starting distribution The distributions from the one-dimensional exponential family Markov chains and their long-run behavior The Metropolis-Hastings algorithm Gibbs sampling algorithm and methods for speeding up convergence Markov chain Monte Carlo sampling Using numerous graphs and diagrams, the author emphasizes a step-by-step approach to computational Bayesian statistics. At each step, important aspects of application are detailed, such as how to choose a prior for logistic regression model, the Poisson regression model, and the proportional hazards model. A related Web site houses R functions and Minitab macros for Bayesian analysis and Monte Carlo simulations, and detailed appendices in the book guide readers through the use of these software packages. Understanding Computational Bayesian Statistics is an excellent book for courses on computational statistics at the upper-level undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners who use computer programs to conduct statistical analyses of data and solve problems in their everyday work.



Bayesian Modeling Using WinBUGS

Bayesian Modeling Using WinBUGS Author Ioannis Ntzoufras
ISBN-10 9781118210352
Release 2011-09-20
Pages 520
Download Link Click Here

A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the use of WinBUGS programming techniques in a variety of Bayesian modeling settings. The author provides an accessible treatment of the topic, offering readers a smooth introduction to the principles of Bayesian modeling with detailed guidance on the practical implementation of key principles. The book begins with a basic introduction to Bayesian inference and the WinBUGS software and goes on to cover key topics, including: Markov Chain Monte Carlo algorithms in Bayesian inference Generalized linear models Bayesian hierarchical models Predictive distribution and model checking Bayesian model and variable evaluation Computational notes and screen captures illustrate the use of both WinBUGS as well as R software to apply the discussed techniques. Exercises at the end of each chapter allow readers to test their understanding of the presented concepts and all data sets and code are available on the book's related Web site. Requiring only a working knowledge of probability theory and statistics, Bayesian Modeling Using WinBUGS serves as an excellent book for courses on Bayesian statistics at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, actuarial science, medicine, and the social sciences who use WinBUGS in their everyday work.



Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Author William M. Bolstad
ISBN-10 9781118593226
Release 2016-09-02
Pages 624
Download Link Click Here

"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.



Computational Statistics

Computational Statistics Author Geof H. Givens
ISBN-10 9781118555484
Release 2012-10-09
Pages 496
Download Link Click Here

This new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field: Optimization Integration and Simulation Bootstrapping Density Estimation and Smoothing Within these sections,each chapter includes a comprehensive introduction and step-by-step implementation summaries to accompany the explanations of key methods. The new edition includes updated coverage and existing topics as well as new topics such as adaptive MCMC and bootstrapping for correlated data. The book website now includes comprehensive R code for the entire book. There are extensive exercises, real examples, and helpful insights about how to use the methods in practice.



Bayesian Statistics

Bayesian Statistics Author Peter M. Lee
ISBN-10 9781118359778
Release 2012-06-25
Pages 488
Download Link Click Here

Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as well as how it contrasts with the conventional approach. The theory is built up step by step, and important notions such as sufficiency are brought out of a discussion of the salient features of specific examples. This edition: Includes expanded coverage of Gibbs sampling, including more numerical examples and treatments of OpenBUGS, R2WinBUGS and R2OpenBUGS. Presents significant new material on recent techniques such as Bayesian importance sampling, variational Bayes, Approximate Bayesian Computation (ABC) and Reversible Jump Markov Chain Monte Carlo (RJMCMC). Provides extensive examples throughout the book to complement the theory presented. Accompanied by a supporting website featuring new material and solutions. More and more students are realizing that they need to learn Bayesian statistics to meet their academic and professional goals. This book is best suited for use as a main text in courses on Bayesian statistics for third and fourth year undergraduates and postgraduate students.



An Introduction to Statistical Computing

An Introduction to Statistical Computing Author Jochen Voss
ISBN-10 9781118728024
Release 2013-08-28
Pages 400
Download Link Click Here

A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course



Graphical Models

Graphical Models Author Christian Borgelt
ISBN-10 0470749563
Release 2009-07-30
Pages 404
Download Link Click Here

Graphical models are of increasing importance in applied statistics, and in particular in data mining. Providing a self-contained introduction and overview to learning relational, probabilistic, and possibilistic networks from data, this second edition of Graphical Models is thoroughly updated to include the latest research in this burgeoning field, including a new chapter on visualization. The text provides graduate students, and researchers with all the necessary background material, including modelling under uncertainty, decomposition of distributions, graphical representation of distributions, and applications relating to graphical models and problems for further research.



Probabilistic Finite Element Model Updating Using Bayesian Statistics

Probabilistic Finite Element Model Updating Using Bayesian Statistics Author Tshilidzi Marwala
ISBN-10 9781119153016
Release 2016-09-23
Pages 248
Download Link Click Here

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students. Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.



Bayesian Analysis for the Social Sciences

Bayesian Analysis for the Social Sciences Author Simon Jackman
ISBN-10 0470686634
Release 2009-10-27
Pages 598
Download Link Click Here

Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS – the most-widely used Bayesian analysis software in the world – and R – an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.



Handbook of Computational Econometrics

Handbook of Computational Econometrics Author David A. Belsley
ISBN-10 9780470748909
Release 2009-08-18
Pages 514
Download Link Click Here

Handbook of Computational Econometrics examines the state of the art of computational econometrics and provides exemplary studies dealing with computational issues arising from a wide spectrum of econometric fields including such topics as bootstrapping, the evaluation of econometric software, and algorithms for control, optimization, and estimation. Each topic is fully introduced before proceeding to a more in-depth examination of the relevant methodologies and valuable illustrations. This book: Provides self-contained treatments of issues in computational econometrics with illustrations and invaluable bibliographies. Brings together contributions from leading researchers. Develops the techniques needed to carry out computational econometrics. Features network studies, non-parametric estimation, optimization techniques, Bayesian estimation and inference, testing methods, time-series analysis, linear and nonlinear methods, VAR analysis, bootstrapping developments, signal extraction, software history and evaluation. This book will appeal to econometricians, financial statisticians, econometric researchers and students of econometrics at both graduate and advanced undergraduate levels.



Large Scale Inverse Problems and Quantification of Uncertainty

Large Scale Inverse Problems and Quantification of Uncertainty Author Lorenz Biegler
ISBN-10 9781119957584
Release 2011-06-24
Pages 388
Download Link Click Here

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: • Brings together the perspectives of researchers in areas of inverse problems and data assimilation. • Assesses the current state-of-the-art and identify needs and opportunities for future research. • Focuses on the computational methods used to analyze and simulate inverse problems. • Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.



The BUGS Book

The BUGS Book Author David Lunn
ISBN-10 9781466586666
Release 2012-10-02
Pages 399
Download Link Click Here

Bayesian statistical methods have become widely used for data analysis and modelling in recent years, and the BUGS software has become the most popular software for Bayesian analysis worldwide. Authored by the team that originally developed this software, The BUGS Book provides a practical introduction to this program and its use. The text presents complete coverage of all the functionalities of BUGS, including prediction, missing data, model criticism, and prior sensitivity. It also features a large number of worked examples and a wide range of applications from various disciplines. The book introduces regression models, techniques for criticism and comparison, and a wide range of modelling issues before going into the vital area of hierarchical models, one of the most common applications of Bayesian methods. It deals with essentials of modelling without getting bogged down in complexity. The book emphasises model criticism, model comparison, sensitivity analysis to alternative priors, and thoughtful choice of prior distributions—all those aspects of the "art" of modelling that are easily overlooked in more theoretical expositions. More pragmatic than ideological, the authors systematically work through the large range of "tricks" that reveal the real power of the BUGS software, for example, dealing with missing data, censoring, grouped data, prediction, ranking, parameter constraints, and so on. Many of the examples are biostatistical, but they do not require domain knowledge and are generalisable to a wide range of other application areas. Full code and data for examples, exercises, and some solutions can be found on the book’s website.



Bayesian Statistics and Marketing

Bayesian Statistics and Marketing Author Peter E. Rossi
ISBN-10 9780470863688
Release 2012-05-14
Pages 368
Download Link Click Here

The past decade has seen a dramatic increase in the use of Bayesian methods in marketing due, in part, to computational and modelling breakthroughs, making its implementation ideal for many marketing problems. Bayesian analyses can now be conducted over a wide range of marketing problems, from new product introduction to pricing, and with a wide variety of different data sources. Bayesian Statistics and Marketing describes the basic advantages of the Bayesian approach, detailing the nature of the computational revolution. Examples contained include household and consumer panel data on product purchases and survey data, demand models based on micro-economic theory and random effect models used to pool data among respondents. The book also discusses the theory and practical use of MCMC methods. Written by the leading experts in the field, this unique book: Presents a unified treatment of Bayesian methods in marketing, with common notation and algorithms for estimating the models. Provides a self-contained introduction to Bayesian methods. Includes case studies drawn from the authors’ recent research to illustrate how Bayesian methods can be extended to apply to many important marketing problems. Is accompanied by an R package, bayesm, which implements all of the models and methods in the book and includes many datasets. In addition the book’s website hosts datasets and R code for the case studies. Bayesian Statistics and Marketing provides a platform for researchers in marketing to analyse their data with state-of-the-art methods and develop new models of consumer behaviour. It provides a unified reference for cutting-edge marketing researchers, as well as an invaluable guide to this growing area for both graduate students and professors, alike.



Case Studies in Bayesian Statistical Modelling and Analysis

Case Studies in Bayesian Statistical Modelling and Analysis Author Clair L. Alston
ISBN-10 9781118394328
Release 2012-10-10
Pages 504
Download Link Click Here

Provides an accessible foundation to Bayesian analysis using real world models This book aims to present an introduction to Bayesian modelling and computation, by considering real case studies drawn from diverse fields spanning ecology, health, genetics and finance. Each chapter comprises a description of the problem, the corresponding model, the computational method, results and inferences as well as the issues that arise in the implementation of these approaches. Case Studies in Bayesian Statistical Modelling and Analysis: Illustrates how to do Bayesian analysis in a clear and concise manner using real-world problems. Each chapter focuses on a real-world problem and describes the way in which the problem may be analysed using Bayesian methods. Features approaches that can be used in a wide area of application, such as, health, the environment, genetics, information science, medicine, biology, industry and remote sensing. Case Studies in Bayesian Statistical Modelling and Analysis is aimed at statisticians, researchers and practitioners who have some expertise in statistical modelling and analysis, and some understanding of the basics of Bayesian statistics, but little experience in its application. Graduate students of statistics and biostatistics will also find this book beneficial.



Bayesian Analysis in Statistics and Econometrics

Bayesian Analysis in Statistics and Econometrics Author Donald A. Berry
ISBN-10 0471118567
Release 1996
Pages 577
Download Link Click Here

This book is a definitive work that captures the current state of knowledge of Bayesian Analysis in Statistics and Econometrics and attempts to move it forward. It covers such topics as foundations, forecasting inferential matters, regression, computation and applications.



The R Book

The R Book Author Michael J. Crawley
ISBN-10 9781118448960
Release 2012-11-07
Pages 1080
Download Link Click Here

Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)



A Course in Statistics with R

A Course in Statistics with R Author Prabhanjan N. Tattar
ISBN-10 9781119152750
Release 2016-03-15
Pages 696
Download Link Click Here

Integrates the theory and applications of statistics using R A Course in Statistics with R has been written to bridge the gap between theory and applications and explain how mathematical expressions are converted into R programs. The book has been primarily designed as a useful companion for a Masters student during each semester of the course, but will also help applied statisticians in revisiting the underpinnings of the subject. With this dual goal in mind, the book begins with R basics and quickly covers visualization and exploratory analysis. Probability and statistical inference, inclusive of classical, nonparametric, and Bayesian schools, is developed with definitions, motivations, mathematical expression and R programs in a way which will help the reader to understand the mathematical development as well as R implementation. Linear regression models, experimental designs, multivariate analysis, and categorical data analysis are treated in a way which makes effective use of visualization techniques and the related statistical techniques underlying them through practical applications, and hence helps the reader to achieve a clear understanding of the associated statistical models. Key features: Integrates R basics with statistical concepts Provides graphical presentations inclusive of mathematical expressions Aids understanding of limit theorems of probability with and without the simulation approach Presents detailed algorithmic development of statistical models from scratch Includes practical applications with over 50 data sets