Download or read online books in PDF, EPUB and Mobi Format. Click Download or Read Online button to get book now. This site is like a library, Use search box in the widget to get ebook that you want.

Understanding Uncertainty

Understanding Uncertainty Author Dennis V. Lindley
ISBN-10 9781118650233
Release 2013-11-26
Pages 424
Download Link Click Here

Praise for the First Edition "...a reference for everyone who is interested in knowing and handling uncertainty." —Journal of Applied Statistics The critically acclaimed First Edition of Understanding Uncertainty provided a study of uncertainty addressed to scholars in all fields, showing that uncertainty could be measured by probability, and that probability obeyed three basic rules that enabled uncertainty to be handled sensibly in everyday life. These ideas were extended to embrace the scientific method and to show how decisions, containing an uncertain element, could be rationally made. Featuring new material, the Revised Edition remains the go-to guide for uncertainty and decision making, providing further applications at an accessible level including: A critical study of transitivity, a basic concept in probability A discussion of how the failure of the financial sector to use the proper approach to uncertainty may have contributed to the recent recession A consideration of betting, showing that a bookmaker's odds are not expressions of probability Applications of the book’s thesis to statistics A demonstration that some techniques currently popular in statistics, like significance tests, may be unsound, even seriously misleading, because they violate the rules of probability Understanding Uncertainty, Revised Edition is ideal for students studying probability or statistics and for anyone interested in one of the most fascinating and vibrant fields of study in contemporary science and mathematics.



Foundations of Risk Analysis

Foundations of Risk Analysis Author Terje Aven
ISBN-10 9781119945789
Release 2012-02-02
Pages 224
Download Link Click Here

Foundations of Risk Analysis presents the issues core to risk analysis – understanding what risk means, expressing risk, building risk models, addressing uncertainty, and applying probability models to real problems. The author provides the readers with the knowledge and basic thinking they require to successfully manage risk and uncertainty to support decision making. This updated edition reflects recent developments on risk and uncertainty concepts, representations and treatment. New material in Foundations of Risk Analysis includes: An up to date presentation of how to understand, define and describe risk based on research carried out in recent years. A new definition of the concept of vulnerability consistent with the understanding of risk. Reflections on the need for seeing beyond probabilities to measure/describe uncertainties. A presentation and discussion of a method for assessing the importance of assumptions (uncertainty factors) in the background knowledge that the subjective probabilities are based on A brief introduction to approaches that produce interval (imprecise) probabilities instead of exact probabilities. In addition the new version provides a number of other improvements, for example, concerning the use of cost-benefit analyses and the As Low As Reasonably Practicable (ALARP) principle. Foundations of Risk Analysis provides a framework for understanding, conducting and using risk analysis suitable for advanced undergraduates, graduates, analysts and researchers from statistics, engineering, finance, medicine and the physical sciences, as well as for managers facing decision making problems involving risk and uncertainty.



Modelling Under Risk and Uncertainty

Modelling Under Risk and Uncertainty Author Etienne de Rocquigny
ISBN-10 9780470695142
Release 2012-04-30
Pages 434
Download Link Click Here

"This volume addresses a concern of very high relevance and growing interest for large industries or environmentalists: risk and uncertainty in complex systems. It gives new insight on the peculiar mathematical challenges generated by recent industrial safety or environmental control analysis, focusing on implementing decision theory choices related to risk and uncertainty analysis through statistical estimation and computation, in the presence of physical modeling and risk analysis. The result will lead statisticians and associated professionals to formulate and solve new challenges at the frontier between statistical modeling, physics, scientific computing, and risk analysis"--



Understanding Statistical Error

Understanding Statistical Error Author Marek Gierlinski
ISBN-10 9781119106913
Release 2016-01-26
Pages 224
Download Link Click Here

This accessible introductory textbook provides a straightforward, practical explanation of how statistical analysis and error measurements should be applied in biological research. Understanding Statistical Error - A Primer for Biologists: Introduces the essential topic of error analysis to biologists Contains mathematics at a level that all biologists can grasp Presents the formulas required to calculate each confidence interval for use in practice Is based on a successful series of lectures from the author’s established course Assuming no prior knowledge of statistics, this book covers the central topics needed for efficient data analysis, ranging from probability distributions, statistical estimators, confidence intervals, error propagation and uncertainties in linear regression, to advice on how to use error bars in graphs properly. Using simple mathematics, all these topics are carefully explained and illustrated with figures and worked examples. The emphasis throughout is on visual representation and on helping the reader to approach the analysis of experimental data with confidence. This useful guide explains how to evaluate uncertainties of key parameters, such as the mean, median, proportion and correlation coefficient. Crucially, the reader will also learn why confidence intervals are important and how they compare against other measures of uncertainty. Understanding Statistical Error - A Primer for Biologists can be used both by students and researchers to deepen their knowledge and find practical formulae to carry out error analysis calculations. It is a valuable guide for students, experimental biologists and professional researchers in biology, biostatistics, computational biology, cell and molecular biology, ecology, biological chemistry, drug discovery, biophysics, as well as wider subjects within life sciences and any field where error analysis is required.



Uncertain Judgements

Uncertain Judgements Author Anthony O'Hagan
ISBN-10 9780470033302
Release 2006-08-30
Pages 338
Download Link Click Here

Elicitation is the process of extracting expert knowledge about some unknown quantity or quantities, and formulating that information as a probability distribution. Elicitation is important in situations, such as modelling the safety of nuclear installations or assessing the risk of terrorist attacks, where expert knowledge is essentially the only source of good information. It also plays a major role in other contexts by augmenting scarce observational data, through the use of Bayesian statistical methods. However, elicitation is not a simple task, and practitioners need to be aware of a wide range of research findings in order to elicit expert judgements accurately and reliably. Uncertain Judgements introduces the area, before guiding the reader through the study of appropriate elicitation methods, illustrated by a variety of multi-disciplinary examples. This is achieved by: Presenting a methodological framework for the elicitation of expert knowledge incorporating findings from both statistical and psychological research. Detailing techniques for the elicitation of a wide range of standard distributions, appropriate to the most common types of quantities. Providing a comprehensive review of the available literature and pointing to the best practice methods and future research needs. Using examples from many disciplines, including statistics, psychology, engineering and health sciences. Including an extensive glossary of statistical and psychological terms. An ideal source and guide for statisticians and psychologists with interests in expert judgement or practical applications of Bayesian analysis, Uncertain Judgements will also benefit decision-makers, risk analysts, engineers and researchers in the medical and social sciences.



Willful Ignorance

Willful Ignorance Author Herbert I. Weisberg
ISBN-10 9781118593790
Release 2014-06-23
Pages 452
Download Link Click Here

An original account of willful ignorance and how this principle relates to modern probability and statistical methods Through a series of colorful stories about great thinkers and the problems they chose to solve, the author traces the historical evolution of probability and explains how statistical methods have helped to propel scientific research. However, the past success of statistics has depended on vast, deliberate simplifications amounting to willful ignorance, and this very success now threatens future advances in medicine, the social sciences, and other fields. Limitations of existing methods result in frequent reversals of scientific findings and recommendations, to the consternation of both scientists and the lay public. Willful Ignorance: The Mismeasure of Uncertainty exposes the fallacy of regarding probability as the full measure of our uncertainty. The book explains how statistical methodology, though enormously productive and influential over the past century, is approaching a crisis. The deep and troubling divide between qualitative and quantitative modes of research, and between research and practice, are reflections of this underlying problem. The author outlines a path toward the re-engineering of data analysis to help close these gaps and accelerate scientific discovery. Willful Ignorance: The Mismeasure of Uncertainty presents essential information and novel ideas that should be of interest to anyone concerned about the future of scientific research. The book is especially pertinent for professionals in statistics and related fields, including practicing and research clinicians, biomedical and social science researchers, business leaders, and policy-makers.



A History of Probability and Statistics and Their Applications before 1750

A History of Probability and Statistics and Their Applications before 1750 Author Anders Hald
ISBN-10 9780471725176
Release 2005-02-25
Pages 608
Download Link Click Here

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. From the Reviews of History of Probability and Statistics and Their Applications before 1750 "This is a marvelous book . . . Anyone with the slightest interest in the history of statistics, or in understanding how modern ideas have developed, will find this an invaluable resource." –Short Book Reviews of ISI



The Flaw of Averages

The Flaw of Averages Author Sam L. Savage
ISBN-10 9781118373583
Release 2012-03-13
Pages 416
Download Link Click Here

A must-read for anyone who makes business decisions that have a major financial impact. As the recent collapse on Wall Street shows, we are often ill-equipped to deal with uncertainty and risk. Yet every day we base our personal and business plans on uncertainties, whether they be next month’s sales, next year’s costs, or tomorrow’s stock price. In The Flaw of Averages, Sam Savage­known for his creative exposition of difficult subjects­ describes common avoidable mistakes in assessing risk in the face of uncertainty. Along the way, he shows why plans based on average assumptions are wrong, on average, in areas as diverse as healthcare, accounting, the War on Terror, and climate change. In his chapter on Sex and the Central Limit Theorem, he bravely grasps the literary third rail of gender differences. Instead of statistical jargon, Savage presents complex concepts in plain English. In addition, a tightly integrated web site contains numerous animations and simulations to further connect the seat of the reader’s intellect to the seat of their pants. The Flaw of Averages typically results when someone plugs a single number into a spreadsheet to represent an uncertain future quantity. Savage finishes the book with a discussion of the emerging field of Probability Management, which cures this problem though a new technology that can pack thousands of numbers into a single spreadsheet cell. Praise for The Flaw of Averages “Statistical uncertainties are pervasive in decisions we make every day in business, government, and our personal lives. Sam Savage’s lively and engaging book gives any interested reader the insight and the tools to deal effectively with those uncertainties. I highly recommend The Flaw of Averages.” —William J. Perry, Former U.S. Secretary of Defense “Enterprise analysis under uncertainty has long been an academic ideal. . . . In this profound and entertaining book, Professor Savage shows how to make all this practical, practicable, and comprehensible.” —­Harry Markowitz, Nobel Laureate in Economics



Approximate Dynamic Programming

Approximate Dynamic Programming Author Warren B. Powell
ISBN-10 0470182954
Release 2007-10-05
Pages 480
Download Link Click Here

Approximate Dynamic Programming has been writing in one form or another for most of life. You can find so many inspiration from Approximate Dynamic Programming also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Approximate Dynamic Programming book for free.



Probability For Dummies

Probability For Dummies Author Deborah J. Rumsey
ISBN-10 9781118429099
Release 2018-05-25
Pages 384
Download Link Click Here

Probability For Dummies has been writing in one form or another for most of life. You can find so many inspiration from Probability For Dummies also informative, and entertaining. Click DOWNLOAD or Read Online button to get full Probability For Dummies book for free.



Uncertainty

Uncertainty Author Millett Granger Morgan
ISBN-10 0521427444
Release 1992-06-26
Pages 332
Download Link Click Here

The authors explain the ways in which uncertainty is an important factor in the problems of risk and policy analysis. This book outlines the source and nature of uncertainty, discusses techniques for obtaining and using expert judgment, and reviews a variety of simple and advanced methods for analyzing uncertainty. Powerful computer environments and good graphical techniques for displaying uncertainty are just two of the more advanced topics addressed in later chapters.



Uncertainty

Uncertainty Author William Briggs
ISBN-10 9783319397566
Release 2016-07-15
Pages 258
Download Link Click Here

This book presents a philosophical approach to probability and probabilistic thinking, considering the underpinnings of probabilistic reasoning and modeling, which effectively underlie everything in data science. The ultimate goal is to call into question many standard tenets and lay the philosophical and probabilistic groundwork and infrastructure for statistical modeling. It is the first book devoted to the philosophy of data aimed at working scientists and calls for a new consideration in the practice of probability and statistics to eliminate what has been referred to as the "Cult of Statistical Significance." The book explains the philosophy of these ideas and not the mathematics, though there are a handful of mathematical examples. The topics are logically laid out, starting with basic philosophy as related to probability, statistics, and science, and stepping through the key probabilistic ideas and concepts, and ending with statistical models. Its jargon-free approach asserts that standard methods, such as out-of-the-box regression, cannot help in discovering cause. This new way of looking at uncertainty ties together disparate fields — probability, physics, biology, the “soft” sciences, computer science — because each aims at discovering cause (of effects). It broadens the understanding beyond frequentist and Bayesian methods to propose a Third Way of modeling.



Risk Analysis

Risk Analysis Author Terje Aven
ISBN-10 0470694424
Release 2008-04-30
Pages 204
Download Link Click Here

Everyday we face decisions that carry an element of risk and uncertainty. The ability to analyze, predict, and prepare for the level of risk entailed by these decisions is, therefore, one of the most constant and vital skills needed for analysts, scientists and managers. Risk analysis can be defined as a systematic use of information to identify hazards, threats and opportunities, as well as their causes and consequences, and then express risk. In order to successfully develop such a systematic use of information, those analyzing the risk need to understand the fundamental concepts of risk analysis and be proficient in a variety of methods and techniques. Risk Analysis adopts a practical, predictive approach and guides the reader through a number of applications. Risk Analysis: Provides an accessible and concise guide to performing risk analysis in a wide variety of fields, with minimal prior knowledge required. Adopts a broad perspective on risk, with focus on predictions and highlighting uncertainties beyond expected values and probabilities, allowing a more flexible approach than traditional statistical analysis. Acknowledges that expected values and probabilities could produce poor predictions - surprises may occur. Emphasizes the planning and use of risk analyses, rather than just the risk analysis methods and techniques, including the statistical analysis tools. Features many real-life case studies from a variety of applications and practical industry problems, including areas such as security, business and economy, transport, oil & gas and ICT (Information and Communication Technology). Forms an ideal companion volume to Aven’s previous Wiley text Foundations of Risk Analysis. Professor Aven’s previous book Foundations of Risk Analysis presented and discussed several risk analysis approaches and recommended a predictive approach. This new text expands upon this predictive approach, exploring further the risk analysis principles, concepts, methods and models in an applied format. This book provides a useful and practical guide to decision-making, aimed at professionals within the risk analysis and risk management field.



Statistics for Spatio Temporal Data

Statistics for Spatio Temporal Data Author Noel Cressie
ISBN-10 9780471692744
Release 2011-05-03
Pages 588
Download Link Click Here

Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material.



Robust Statistics

Robust Statistics Author Peter J. Huber
ISBN-10 9781118210338
Release 2011-09-20
Pages 380
Download Link Click Here

A new edition of the classic, groundbreaking book on robust statistics Over twenty-five years after the publication of its predecessor, Robust Statistics, Second Edition continues to provide an authoritative and systematic treatment of the topic. This new edition has been thoroughly updated and expanded to reflect the latest advances in the field while also outlining the established theory and applications for building a solid foundation in robust statistics for both the theoretical and the applied statistician. A comprehensive introduction and discussion on the formal mathematical background behind qualitative and quantitative robustness is provided, and subsequent chapters delve into basic types of scale estimates, asymptotic minimax theory, regression, robust covariance, and robust design. In addition to an extended treatment of robust regression, the Second Edition features four new chapters covering: Robust Tests Small Sample Asymptotics Breakdown Point Bayesian Robustness An expanded treatment of robust regression and pseudo-values is also featured, and concepts, rather than mathematical completeness, are stressed in every discussion. Selected numerical algorithms for computing robust estimates and convergence proofs are provided throughout the book, along with quantitative robustness information for a variety of estimates. A General Remarks section appears at the beginning of each chapter and provides readers with ample motivation for working with the presented methods and techniques. Robust Statistics, Second Edition is an ideal book for graduate-level courses on the topic. It also serves as a valuable reference for researchers and practitioners who wish to study the statistical research associated with robust statistics.



Spatial and Spatio temporal Bayesian Models with R INLA

Spatial and Spatio temporal Bayesian Models with R   INLA Author Marta Blangiardo
ISBN-10 9781118950210
Release 2015-03-26
Pages 320
Download Link Click Here

Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio­-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations



Illuminating Statistical Analysis Using Scenarios and Simulations

Illuminating Statistical Analysis Using Scenarios and Simulations Author Jeffrey E. Kottemann
ISBN-10 9781119296362
Release 2017-02-09
Pages 312
Download Link Click Here

Features an integrated approach of statistical scenarios and simulations to aid readers in developing key intuitions needed to understand the wide ranging concepts and methods of statistics and inference Illuminating Statistical Analysis Using Scenarios and Simulations presents the basic concepts of statistics and statistical inference using the dual mechanisms of scenarios and simulations. This approach helps readers develop key intuitions and deep understandings of statistical analysis. Scenario-specific sampling simulations depict the results that would be obtained by a very large number of individuals investigating the same scenario, each with their own evidence, while graphical depictions of the simulation results present clear and direct pathways to intuitive methods for statistical inference. These intuitive methods can then be easily linked to traditional formulaic methods, and the author does not simply explain the linkages, but rather provides demonstrations throughout for a broad range of statistical phenomena. In addition, induction and deduction are repeatedly interwoven, which fosters a natural "need to know basis" for ordering the topic coverage. Examining computer simulation results is central to the discussion and provides an illustrative way to (re)discover the properties of sample statistics, the role of chance, and to (re)invent corresponding principles of statistical inference. In addition, the simulation results foreshadow the various mathematical formulas that underlie statistical analysis. In addition, this book: • Features both an intuitive and analytical perspective and includes a broad introduction to the use of Monte Carlo simulation and formulaic methods for statistical analysis • Presents straight-forward coverage of the essentials of basic statistics and ensures proper understanding of key concepts such as sampling distributions, the effects of sample size and variance on uncertainty, analysis of proportion, mean and rank differences, covariance, correlation, and regression • Introduces advanced topics such as Bayesian statistics, data mining, model cross-validation, robust regression, and resampling • Contains numerous example problems in each chapter with detailed solutions as well as an appendix that serves as a manual for constructing simulations quickly and easily using Microsoft® Office Excel® Illuminating Statistical Analysis Using Scenarios and Simulations is an ideal textbook for courses, seminars, and workshops in statistics and statistical inference and is appropriate for self-study as well. The book also serves as a thought-provoking treatise for researchers, scientists, managers, technicians, and others with a keen interest in statistical analysis. Jeffrey E. Kottemann, Ph.D., is Professor in the Perdue School at Salisbury University. Dr. Kottemann has published articles in a wide variety of academic research journals in the fields of business administration, computer science, decision sciences, economics, engineering, information systems, psychology, and public administration. He received his Ph.D. in Systems and Quantitative Methods from the University of Arizona.